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ABSTRACT

A robust distributed beamforming technique for half-duplex relay
network is developed. With the mismatched channel state informa-
tion (CSI) being available at the destination, the received minimum
quality-of-service (QoS) is maximized subject to the constraints that
the maximum of the individual relay transmitted powers is limited.
This distributed beamforming problem is shown to be a quasi-convex
problem and can be solved using second-order-cone programming
(SOCP) along with a bisection search method. Simulation result-
s demonstrate that the proposed method is robust to the imperfect
knowledge of the CSI and guarantees no relay power outage.

1. INTRODUCTION

Relay networks have recently attracted much interest in the literature
as they not only can exploit cooperative spatial diversity of differen-
t users in the network, but also can extend the coverage of wireless
communication systems [1]-[3]. These advantages are introduced by
the scheme that different users in relay networks share their commu-
nication resources to help each other in data transmission.

Different relaying strategies have been proposed to achieve co-
operative diversity. Amplify-and-forward (AF), decode-and-forward
(DF) and compress-and-forward (CF) relaying protocols have been
widely used in relay networks [1]-[3]. Due to its simplicity, the AF
relaying protocol has become one of the most popular relaying s-
trategies. In the AF protocol, the relay nodes forward properly scaled
and phase-shifted versions of their received signals to the receiver.

Recently, several distributed beamforming approaches [4]-[7]
have been developed for the relay networks. In [4] and [5], a re-
lay network with one pair of source and destination is considered.
In [6] and [7], peer to peer distributed beamforming techniques were
proposed for multiple-pair of sources and destinations. Perfect chan-
nel state information (CSI) is assumed to be known in [4] and [6],
and second order statistics of the CSI are assumed to be available
in [5] and [7]. While the performance of the approaches assuming
perfectly known CSI is better than the approaches with known statis-
tics of the CSI, the former approaches suffer from the performance
degradation introduced by CSI estimation errors in practical appli-
cations. Several robust distributed beamforming approaches have
recently been proposed to relieve the performance degradation [8]-
[9]. In [8], the estimated CSI from the relays to the destination is
assumed to have errors, while the CSI from the source to the relays
is assumed to be perfectly known. In [9], the correlation matrices of
the channel vectors are assumed to have independent estimation.
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In this paper, we propose a worst-case based robust distributed
beamforming approach for relay networks with one source, one des-
tination and multiple relays. We assume that both the channel vec-
tors of the source-to-relays and relays-to-destination have estimation
errors. The quality-of-service (QoS) at the destination is maximized
while the individual relay transmitted power is constrained. The re-
sultant problem is shown to be a quasi-convex problem that the op-
timal solution can be found by using a bisection search method and
second-order-cone programming (SOCP). Simulation results show
that the proposed beamforming approach can guarantee no power
outage.

Relation to prior work: Both this paper and the works in [4]-[9]
consider the distributed beamforming method for relay networks. D-
ifferent from [4]-[7], this paper proposes a roubst distributed beam-
forming approach for the case that the CSI is imperfectly known. Al-
though robust distributed beamforming methods were developed in
[8] and [9], this paper proposes a quite different method. The method
in [8] considers the case that only the CSI of relays-to-destination is
assumed to have estimation errors and the approach in [9] is devel-
oped for the case that the coherent matrices of the channel vectors
have estimation errors. In addition, semi-definite programming con-
straints are considered in [9], which has a much higher computation
complexity than SOCP.

Notations: Throughout this paper, bold upper and lower case
letters denote matrices and vectors, respectively. (·)ij denotes the
(i, j)th element of a matrix. The ith element of a vector x is denoted
by the corresponding lower case letter with a subscript, i.e. xi. | · |
and ∥ · ∥ denote the absolute value of a scalar and the Euclidean
norm of a vector, respectively. (·)∗, (·)T and (·)H stand for the
conjugate, transpose and Hermitian transpose, respectively. E{·} is
the statistical expectation.

2. SIGNAL MODEL

As shown in Fig. 1, a half-duplex relay network with one single-
antenna transmitting source, one single-antenna destination and R
single-antenna relays is considered. We assume that there is no di-
rect link between the source and destination, and each transmission
consists of two stages. In the first stage, the source broadcasts its da-
ta to the relays. In the second stage, the signals received at the relays
are scaled by complex values and transmitted to the destination. In
the first stage, the R× 1 vector of signals received by the relays can
be written as

r(n) = fs(n) + η(n) (1)

where n is the time index, f is the R×1 vector of channel coefficients
between the source and the relays, s(n) is the signal transmitted by
the source, and η(n) is the R × 1 vector of the relay noise. In the
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Fig. 1. System model.

second stage, the received signals of the relays are scaled by complex
values and transmitted to the destination, which can be written as

t(n) = WHr(n) (2)

where W is a diagonal matrix with wi, i = 1, · · · , R, on the diag-
onal, and wi is the weight coefficient of the ith relay. Let g denote
the vector of channel coefficients between the relays and the desti-
nation. Using (1) and (2), the signal received by the destination can
be written as

y(n) = gT t(n) + υ(n)

= gTWHfs(n) + gTWHη(n) + υ(n) (3)

where υ(n) denotes the destination noise. Let

ys(n) , gTWHfs(n) (4)

yn(n) , gTWHη(n) + υ(n) (5)

denote the desired signal and noise components at the destination,
respectively. Equation (3) can be rewritten as

y(n) = ys(n) + yn(n) (6)

Throughout this paper, it will be assumed that the destination
estimates the CSI and computes the relay weights, which are fed
back to the relays via low rate feedback channels. Due to many
reasons, such as the mobility of the user and the relays, the perfect
CSI is difficult to be obtained in practical applications. In this paper,
we assume that the CSI available at the destination has uncertainties
and can be modeled as

f = f̂ + δf (7)
g = ĝ + δg (8)

where f̂ and ĝ are the estimated values of f and g, respectively,
and δf and δg denote the estimation error of f and g, respectively.
We also assume that the errors of the channel coefficients can be
bounded by some known constants ε > 0 and β > 0

|δfi| ≤ ε, |δgi| ≤ β, i = 1, · · · , R. (9)

3. WORST-CASE BASED ROBUST DISTRIBUTED
BEAMFORMING

Let us consider the following network beamforming problem that
maximizes the destination quality of service (QoS) subject to the
individual relay power constraints. The signal-to-noise-ratio (SNR)

will be used as a measure of QoS. In the case of perfectly known
CSI, the beamforming problem can be written as

max
W

SNR s.t. Pi ≤ Pmax
i i = 1, · · · , R (10)

where Pi is the individual relay transmit power and Pmax
i is the

maximum allowed individual relay transmit power. In the case of
imperfectly known CSI, the worst-case based beamforming problem
can be written as

max
W

min
|δfi|≤ε

|δgi|≤β

SNR s.t. max
|δfi|≤ε

Pi ≤ Pmax
i i = 1, · · · , R . (11)

The received SNR at the destination is given by

SNR =
E{|ys(n)|2}
E{|yn(n)|2}

. (12)

Using (4), we can write the power of the signal component at the
destination as

E{|ys(n)|2} = E{gTWHfs(n)s∗(n)fHWg∗}
= Psg

TWHf fHWg∗ (13)

where Ps is the transmitted power of the source. Let w ,
diag{W}, where diag{x} denotes the operation that stacks the
diagonal of a matrix in a vector if x is a matrix, or generates a matrix
that has the elements of x on the diagonal if x is a vector. Equation
(13) can be rewritten as

E{|ys(n)|2} = Psw
Hdiag{g}f fHdiag{g∗}w

= Psw
H(g ⊙ f)(g ⊙ f)Hw

= Psw
HhhHw (14)

where h , g⊙ f can be viewed as the equivalent channel coefficient
between the source and the destination, and ⊙ denotes the element-
wise Schur-Hadamard product.

Using (7) and (8), h can be written as

h = (f̂ + δf )⊙ (ĝ + δg)

= f̂ ⊙ ĝ + f̂ ⊙ δg + δf ⊙ ĝ + δf ⊙ δg

= ĥ+ δh (15)

where ĥ , f̂ ⊙ ĝ and δh , f̂ ⊙ δg + δf ⊙ ĝ+ δf ⊙ δg . Using (9),
we can obtain

|δhi| ≤ β|f̂i|+ ε|ĝi|+ εβ , ξi, i = 1, · · · , R. (16)

As a result, the norm of the error vector δh can be written as

∥δh∥ =
( R∑

i=1

|δhi|2
) 1

2 ≤
( R∑

i=1

ξ2i
) 1

2 , ζ . (17)

Substituting (15) into (14), we have

E{|ys(n)|2} = Psw
H(ĥ+ δh)(ĥ+ δh)

Hw (18)

Using (5), we can write the power of the noise component at the
destination as

E{|yn(n)|2} = E{gTWHη(n)η(n)HWg∗}+ E{|υ(n)|2}
= σ2

ηw
Hdiag{g}diag{g∗}w + σ2

υ

= σ2
ηw

HGw + σ2
υ (19)
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where we have assumed that the noises at the relays are spatially
white and the relay noise and the destination noise are statistically
independent, σ2

η and σ2
υ are noise powers at the relay and the destina-

tion, respectively, and G , diag{g}diag{g∗} is a diagonal matrix
with (G)ii = |gi|2 = |ĝi + δgi|2.

By making use of (1) and (2), the transmitted power of the ith
relay can be written as

Pi = E{|ti(n)|2}
= E{|wi(fis(n) + ηi(n))|2}
= |wi|2(Ps|fi|2 + σ2

η) (20)

where we have assumed that the transmitted signal and the relay
noise are statistically independent.

Substituting (7) into (20), we can obtain

Pi = |wi|2(Ps|f̂i + δfi|2 + σ2
η) . (21)

Using (18), (19) and (21), problem (11) can be rewritten as

max
w

min
∥δh∥≤ζ

|δgi|≤β

Psw
H(ĥ+ δh)(ĥ+ δh)

Hw

σ2
ηwHGw + σ2

υ

(22)

s.t. max
|δfi|≤ε

|wi|2(Ps|f̂i + δfi|2 + σ2
η) ≤ Pmax

i i = 1, · · · , R .

We can see that the operation of taking the square root of the objec-
tive function of (22) does not change the solution set. As a result,
problem (22) can be rewritten as

max
w

min
∥δh∥≤ζ

|δgi|≤β

√
Ps|wH(ĥ+ δh)|

(σ2
ηwHGw + σ2

υ)
1
2

(23)

s.t. max
|δfi|≤ε

|wi|2(Ps|f̂i + δfi|2 + σ2
η) ≤ Pmax

i i = 1, · · · , R .

To simplify the problem in (23), we first find the optimal objec-
tive values of the following three sub-problems:

min
δh

|wH(ĥ+ δh)| s.t. ∥δh∥ ≤ ζ (24)

max
δgi

(σ2
ηw

HGw + σ2
υ)

1
2 s.t. |δgi| ≤ β (25)

max
δfi

|wi|2(Ps|f̂i + δfi|2 + σ2
η) s.t. |δfi| ≤ ε . (26)

Using triangle and Cauchy-Schwarz inequalities along with ∥δh∥ ≤
ζ, we have

|wH(ĥ+ δh)| ≥ |wH ĥ| − |wHδh|
≥ |wH ĥ| − ∥w∥ · ∥δh∥
≥ |wH ĥ| − ζ∥w∥ (27)

where we have assumed that |wH ĥ| > ζ∥w∥. It can be shown that
the equalities hold true when

δh = −ζ
w

∥w∥e
jϕ (28)

where ϕ , angle(wH ĥ). Combining (27) and (28), we can obtain
the optimal objective value of (24)

min
∥δh∥≤ζ

|wH(ĥ+ δh)| = |wH ĥ| − ζ∥w∥ . (29)

Applying triangle inequality and the constraint |δgi| ≤ β, we have

σ2
ηw

HGw = σ2
η

R∑
i=1

|wi|2|ĝi + δgi|2

≤ σ2
η

R∑
i=1

|wi|2(|ĝi|+ |δgi|)2

= σ2
η

R∑
i=1

|wi|2(|ĝi|2 + 2|ĝi| |δgi|+ |δgi|2)

≤ σ2
η

R∑
i=1

|wi|2(|ĝi|2 + 2β|ĝi|+ β2)

= wHDw (30)

where D is a diagonal matrix with Dii , σ2
η(|ĝi|2 + 2β|ĝi|+ β2).

It can be verified that the equalities hold true when

δgi = β
ĝi
|ĝi|

, i = 1, · · · , R . (31)

Combining (30) and (31), the maximum of the objective function in
(25) can be written as

max
δgi≤β

(σ2
ηw

HGw + σ2
υ)

1
2 = (wHDw + σ2

υ)
1
2 . (32)

Applying triangle inequality and |δfi| ≤ ε in (26), we have

Ps|f̂i + δfi|2 + σ2
η ≤ Ps(|f̂i|+ |δfi|)2 + σ2

η

= Ps(|f̂i|2 + 2|f̂i| |δfi|+ |δfi|2) + σ2
η

≤ Ps(|f̂i|2 + 2ε|f̂i|+ ε2) + σ2
η

= α2 (33)

where α , (Ps(|f̂i|2 + 2ε|f̂i|+ ε2) + σ2
η)

1
2 . The equalities in (33)

hold true when

δfi = ε
f̂i

|f̂i|
, i = 1, · · · , R . (34)

Making use of (33) and (34), the maximum of the objective function
in (26) can be written as

max
δfi≤ε

|wi|2(Ps|f̂i + δfi|2 + σ2
η) = |wi|2α2 . (35)

Using (29), (32) and (35), we can get a sub-optimal solution to prob-
lem (23) by solving

max
w

√
Ps(|wH ĥ| − ζ∥w∥)
(wHDw + σ2

υ)
1
2

(36)

s.t. |wi|2α2 ≤ Pmax
i , i = 1, · · · , R .

The optimal objective value of problem (36) is a lower bound to that
of problem (23) and they are equal to each other when the optimal
solution to (36) satisfies −ζ wie

jϕ

∥w∥ = εβ f̂iĝi
|f̂i| |ĝi|

, i = 1, · · · , R. In-
troducing an auxiliary variable τ and noticing that w can be rotated
with arbitrary phase without affecting the SNR, we can rewrite (36)
as

max
w,τ

τ (37)

s.t. wH ĥ ≥ τ√
Ps

(wHDw + σ2
υ)

1
2 + ζ∥w∥

|wi|2α2 ≤ Pmax
i , i = 1, · · · , R .
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The problem in (37) is a quasi-convex problem [10] and can be
solved using SOCP by introducing two auxiliary variables. In par-
ticular, for any given τ , we check the feasibility of the following
convex problem

find w (38)

s.t. wH ĥ ≥ τ√
Ps

(wHDw + σ2
υ)

1
2 + ζ∥w∥

|wi|2α2 ≤ Pmax
i , i = 1, · · · , R .

Let τmax denote the optimal value in (37). If the feasibility problem
in (38) is feasible, then we have τ ≤ τmax. It can be proven by the
contradict method. Assuming that τ > τmax and problem (38) is
feasible, we can see that it contradicts the assumption that τmax is
the optimal value of problem (37). On the contrary, if the feasibility
problem (38) is infeasible, then we can conclude that τ > τmax.

As a result, we can use a bisection search technique to solve
such quasi-convex problem by checking the feasibility of the convex
problem (38) in each step. Firstly, we choose certain interval [τl, τu]
that contains the optimal τmax. Then we solve the convex feasibility
problem (38) at the middle point τ = (τl + τu)/2. If the problem is
feasible, then we set the lower bound τl = τ . Otherwise, we assign
the upper bound τu = τ . The midpoint of the new interval is used
to check the feasibility of problem (38) again. This bisection search
will stop until the width of the interval [τl, τu] is small enough. We
briefly summarize the bisection search method as following:

1. τ := (τl + τu)/2.

2. Solve the convex feasibility problem (38). If (38) is feasible,
then τl := τ , otherwise τu := τ .

3. If (τu − τl) < ε0 then stop. Otherwise, go to Step 1.

Here, ε0 is the tolerance of our error in finding τmax.

4. SIMULATION RESULTS

In our simulations, we consider a relay network with R = 20 relays
and assume Rayleigh flat-fading channels whose coefficients have
unit variance. The relay and destination noise powers are assumed
to be equal to each other. The transmitted power of the source is
assumed to be 10 dB higher than the noise powers. The values of
the norm bounds are assumed to be ε = β = 0.05, which is equiv-
alent to the case that the error vectors of the channel coefficients are
bounded as ∥δf∥ = ∥δg∥ =

√
Rε ≈ 0.22.

Fig. 2 shows the outage probability of the individual relay trans-
mitted power. A power outage occurs when anyone of the relay
transmitted powers Pi is larger than the maximum allowed relay
transmitted power Pmax

i . As the perfect CSI is not available in prac-
tical applications, the performance of the method of [5] with per-
fectly known CSI is simulated only as a reference. We can see from
Fig. 2 that there is no power outage by using the proposed robust
method. While the power outage occurs for all the tested cases when
the non-robust method [5] is used. Fig. 3 shows the maximum re-
ceived SNR at the destination. Compared to the bench method with
perfectly known CSI, the proposed method has an SNR degradation
of less than 2 dB.

5. CONCLUSIONS

The problem of robust distributed network beamforming has been
considered in the case of mismatched source-to-relay and relay-to-
destination channels. A novel approach that is based on worst-case
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Fig. 2. Outage of individual relay transmitted power.
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Fig. 3. Maximum received SNR at the destination.

optimization has been proposed. In our method, the minimum of
the received signal-to-noise-ratio in the uncertain set is maximized
subject to the constraints of the maximum individual relay trans-
mitted powers. It has been shown that the problem can be solved
using second-order-cone programming along with bisection search
method. Our simulation results validate that the proposed robust
method guarantees no power outage.
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