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ABSTRACT

This paper studies the beamforming design of two-way relay systems
for simultaneous information and power transfer with consideration
of imperfect channel state information (CSI). To this end, we seek
the robust beamforming design to maximize the weighted sum rate
under the power constraint at relay nodes and the energy harvest-
ing constraints at the two source nodes. Due to the infinitely many
nonconvex constraints, the robust beamforming design problem is
challenging. Therefore, we firstly propose an approximate to the
signal to interference plus noise ratio (SINR). Then an iterative al-
gorithm is developed based on the semidefinite relaxation (SDR), S-
procedure and successive convex approximation (SCA) techniques.
Furthermore, the effectiveness of the proposed algorithm is validated
by numerical experiments.

Index Terms— Two-way relay, robust beamforming, semidefi-
nite relaxation, S-procedure, successive convex approximation

1. INTRODUCTION

Energy harvesting has been considered as a promising technique in
wireless communications [1–6], as it can scavenge energy from ra-
dio signals to prolong the life time of battery-powered systems. Re-
cently, the works in [1] and [2] discussed the tradeoff between in-
formation and power transfer in flat-fading channels and frequency-
selective fading channels, respectively. The analysis has been ex-
tended to MIMO broadcasting channels [3], two-hop MIMO relay
channels [4] and two-user MISO interference channels [5]. The
above works assume that perfect channel state information (CSI)
is available at the transmitters. However, CSI error is inevitable in
practice due to, e.g., the channel estimation error and time-varying
nature of wireless channels. In view of this, [6] investigated the ro-
bust beamforming design of MIMO broadcasting channels with CSI
errors for energy harvesting.

In this paper, we consider the robust beamforming design in an
amplify-and-forward (AF) based two-way relay system for simulta-
neous information and power transfer, wherein the two source nodes
exchange their information via multiple relays and harvest energy
from radio signals. Specifically, a bounded CSI error model is as-
sumed in this paper, and mathematically the robust relay beamform-
ing design is formulated to maximize the weighted sum rate of the
two-way relay system subject to the maximal power limit of relay
nodes and minimal energy harvesting requirement of each source n-
ode. The design is challenging due to the coupled and nonconvex
structure of the two-phase transmission and the existence of the CSI
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error. Therefore, as a key to this paper, the idea of approximation is
utilized to fully explore the underlying structure of the problem.

Indeed, the two-way relay scenario has been considered in [7],
where the robust power minimization problem without energy har-
vesting requirements is considered, and in [8], where the rate re-
gion is characterized by the rate profile approach. Moreover, it has
been shown that a series of rate-based utility maximization prob-
lems can be transformed into difference-of-convex programmings,
and the successive convex approximation (SCA) algorithm [9, 10]
can thus be utilized to obtain a Karush-Kuhn-Tucker (KKT) solution
efficiently [11–13]. However, to the best of our knowledge, the ro-
bust sum rate maximization problem has not been discussed before
in two-way relay systems.

The rest of this paper is organized as follows. In Section 2, the
system model and the problem formulation are presented. After-
wards, the signal to interference plus noise ratio (SINR) is approx-
imated and the resulting robust beamforming design is then solved
by employing the semidefinite relaxation (SDR), S-procedure and S-
CA techniques in Section 3. The simulation results are presented in
Section 4.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a two-way AF relay system [8], where two source nodes S1

and S2 exchange information via K relay nodes and harvest energy
also from these relay nodes. Each node is equipped with a single
antenna and operates in half-duplex mode. Hence, two consecutive
phases are involved to complete a round of information exchange.

In the 1st phase, S1 and S2 send their independent information
to the K relay nodes, simultaneously. So, the received signal at the
relay nodes can be written in a vector form as

yR =
√
P1h1x1 +

√
P2h2x2 + nR, (1)

where xi denotes the transmit symbol of Si with E(|xi|2) = 1, Pi
is the transmit power of Si, nR ∼ CN (0, σ2

0IK) is the complex
Gaussian noise at relay nodes, and hi = [hi1, . . . , hiK ]T represents
the flat-fading channel between Si and all relay nodes for i = 1, 2.

In the 2nd phase, each relay amplifies its received signal by wk,
for k=1, . . . ,K. Thus, the transmitted signal vector of the K relay
nodes can be expressed as

xR = w ◦ yR =

2∑
i=1

√
Pi diag(w)hixi + diag(w)nR, (2)

where ◦ is the Hadamard product operator, and w = [w1, . . . , wK ]T .
It can be shown that the total transmit power of the relay nodes is

pR =

2∑
i=1

Pih
H
i diag(w)H diag(w)hi + σ2

0w
Hw. (3)
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Then, theK relay nodes broadcast the amplified signal to S1 and S2,
simultaneously. The received signal at Si can thus be expressed as

yi = hTi xR + ni =

self-interference︷ ︸︸ ︷√
Pih

T
i diag(w)hixi

+
√
Pjh

T
i diag(w)hjxj+hTi diag(w)nR + ni (4)

where ni ∼ CN (0, σ2
i ) is the additive Gaussian noise at Si.

Upon receiving the superimposed signal from the multiple re-
lays, the two source nodes will perform the information detection
(ID) and energy harvesting (EH) operation. More specifically, when
performing ID, Si subtracts the self-interference term from yi, and
then detects its desired signal xj . Hence, the resulting SINR of the
link from Sj to Si can be expressed as

SINRi =
Pj |hTi diag(w)hj |2

σ2
0 |hTi diag(w)|2 + σ2

i

. (5)

The Shannon information rate is Ri= 1
2

log2(1+SINRi) in bps/Hz,
where the factor 1/2 is due to equal-duration time slots for relaying.
Accordingly, the weighted sum rate of the system is given by

Rsum = θR1 + (1− θ)R2, (6)

where θ ∈ (0, 1) is the weight for the link from S2 to S1. When
performing EH, the harvested energy at Si can be written as [3]

ξi=η(Pi|hTi diag(w)hi|2+Pj |hTi diag(w)hj |2+σ2
0 |hTi diag(w)|2).

(7)
where the constant η accounts for the energy conversion loss in the
transducer. Without loss of generality, we assume that η = 1.

Noticed that, only the ideal case that the source nodes could ex-
ecute ID and EH simultaneously is considered in this paper. More-
over, due to the limited power of relay nodes, there is a tradeoff be-
tween the information and power transfer. Thus, we consider the op-
timal beamforming design to maximize the weighted sum rate Rsum

under the power constraint at relay nodes and the energy harvesting
constraints at the source nodes. Mathematically, the problem can be
formulated as

(P0) max
w,R1,R2

θR1 + (1− θ)R2 (8a)

s. t.

2∑
i=1

Pih
H
i diag(wH) diag(w)hi + σ2

0w
Hw ≤ Pmax, (8b)

Pi|hTi diag(w)hi|2 + Pj |hTi diag(w)hj |2

+ σ2
0 |hTi diag(w)|2 ≥ Ei, (8c)

1

2
log2

(
1+

Pj |hTi diag(w)hj |2

σ2
0 |hTi diag(w)|2 + σ2

i

)
= Ri, (8d)

∀i, j ∈ {1, 2}, i 6= j.

It is not surprising that (8c) can be satisfied automatically if Ei is
small enough, e.g., 0. In such case, (P0) degenerates into the sum
rate maximization problem of two-way relay systems, which is NP-
hard in general and is still open [8, 14]. If the CSI error is taken into
account, the problem will be more complicated. For simplicity, we
consider the following additive CSI error model:

hi = ĥi + ei, i = 1, 2, (9)

where ĥi is the channel estimate and ei is the corresponding channel
error vector. Moreover, we assume that ei satisfies the spherical
error model, i.e., ‖ei‖ ≤ δi for i = 1, 2.

To cope with the CSI error, we will rewrite the forwarding power
at relay nodes and SINR, as well as the energy at each receiver node
in an explicit form of e, defined by e = [eT1 , e

T
2 ]T . Denoting W=

wwH with rank(W)=1, and substituting (9) into (3) yields

pR = eHAe + 2<{eHa}+ a, (10)

where Q1 =[IK ,0K ], Q2 =[0K , IK ], and

A = P1Q
H
1 (I ◦W)Q1+ P2Q

H
2 (I ◦W)Q2,

a = P1Q
H
1 (I ◦W)ĥ1 + P2Q

H
2 (I ◦W)ĥ2,

a = P1ĥ
H
1 (I ◦W)ĥ1 + P2ĥ

H
2 (I ◦W)ĥ2 + σ2

0 Tr(W).

Here, we remark that the power pR is affected by the CSI errors,
which may violate the power limit if W is not carefully designed.

Further, we approximate hTi diag(w)hj by

ĥTi diag(w)ĥj + ĥTi diag(w)Qje + eTQT
i diag(w)ĥj . (11)

Thus, SINRi in (5) and ξi in (7) can be approximated by

SINRi ≈
Pj(e

TCe∗ + 2<{eT c}+ c)

eTDie∗ + 2<{eTdi}+ di
, (12)

ξi ≈ eTBie
∗ + 2<{eTbi}+ bi, (13)

respectively, where Fij = diag(ĥi)W diag(ĥHj ), and

C = QT
1 F22Q1+QT

2 F11Q2+QT
1 F21Q2+QT

2 F12Q1,

c = QT
1 F22ĥ

∗
1 + QT

2 F11ĥ
∗
2,

c = hT1 F22ĥ
∗
1,

Di = σ2
0Q

T
i (I◦W)Qi + 4PiQ

T
i FiiQi,

di = σ2
0Q

T
i (I◦W)ĥ∗i ,

di = σ2
0ĥ

T
i (I◦W)ĥ∗i + σ2

i ,

Bi = PjC + Di,

bi = Pjc + di + 2PiQ
T
i Fiiĥ

∗
i ,

bi = Pjc+ di + Piĥ
T
i Fiiĥ

∗
i − σ2

i .

Consequently, by taking the CSI errors into account, we consider the
following problem

(P1) max
W�0, R1,R2

θR1 + (1− θ)R2 (14a)

s. t. eHAe+2<{eHa}+a≤Pmax, (14b)

eTBie
∗+2<{eTbi}+bi≥Ei, (14c)

1

2
log2

(
1+

Pj(e
TCe∗+2<{eT c}+c)

eTDie∗+2<{eTdi}+di

)
=Ri, (14d)

∀‖ei‖ ≤ δi, i, j ∈ {1, 2}, i 6= j, (14e)
rank(W)=1. (14f)

3. ROBUST BEAMFORMING DESIGN BY SDR AND SCA

The problem (P1) is challenging due to infinitely many constraints in
(14b) and (14c) and infinitely many nonconvex constraints in (14d)
and the rank-1 constraint. To handle this problem, we propose a
suboptimal design which leverages the idea of approximation and
relaxation. Specifically, the SDR, S-procedure and the SCA tech-
niques alleviate the difficulties substantially, as we will show below.
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3.1. Conservative Approximation to (P1)

Firstly, we note that the numerator and the denominator of the con-
straint (14d) share a common CSI error. This fact implies that the
CSI error resulting in the worst-case numerator may be beneficial to
denominator. Yet, it is difficult, if not mathematically intractable, to
make full use of this property [7]. In the sequel, we propose a sub-
optimal approach for solving the robust beamforming design (P1).

By replacing the left-hand side (LHS) of constraint (14d) with
its lower bound, the problem (P1) can thus be conservatively (hence,
safely) approximated by the following problem:

(P2) max
W�0, R1,R2

θR1 + (1− θ)R2 (15a)

s. t. max
‖e1‖≤δ1,‖e2‖≤δ2

eHAe+2<{eHa}+a≤Pmax, (15b)

min
‖e1‖≤δ1,‖e2‖≤δ2

eTBie
∗+2<{eTbi}+bi≥Ei, (15c)

min
‖e1‖≤δ1,‖e2‖≤δ2

eTCe∗+2<{eT c}+c

max
‖e1‖≤δ1,‖e2‖≤δ2

eTDie∗+2<{eTdi}+di
≥ 22Ri−1

Pj
, (15d)

rank(W)=1, ∀i, j ∈ {1, 2}, i 6= j. (15e)

3.2. SDR and S-procedure

The rank-1 constraint makes the problem highly complicated, and a
general treatment is the so-called SDR technique [15], which sim-
ply drops the rank-1 restriction on W. Furthermore, by introducing
slack variables {t1, t21, t22} to (15d), (P2) can be relaxed into

(P3) max
W�0,t1,{Ri,t2i}

θR1 + (1− θ)R2 (16a)

s. t. max
‖e1‖≤δ1,‖e2‖≤δ2

eHAe+2<{eHa}+a ≤ Pmax, (16b)

min
‖e1‖≤δ1,‖e2‖≤δ2

eTBie
∗+2<{eTbi}+bi ≥ Ei (16c)

min
‖e1‖≤δ1,‖e2‖≤δ2

eTCe∗+2<{eT c}+c≥ t1, (16d)

max
‖e1‖≤δ1,‖e2‖≤δ2

eTDie
∗+2<{eTdi}+di≤ t2i, (16e)

t1
t2i
≥ 22Ri−1

Pj
, ∀i, j ∈ {1, 2}, i 6= j. (16f)

It is not difficult to verify that the inequalities in (16d)-(16f) hold
with equalities at the optimal solution, or else one can always in-
crease {t1, R1, R2} and reduce {t2i} such that the objective value
can be increased without any violation of other constraints. Now, the
difficulties of (P3) lie in two aspects: one is the infinite number of
constraints in (16b)-(16e), which are convex, but still computation-
ally intractable, and the other is the nonconvex constraint (16f).

The first difficulty can be coped with the well-known S-
procedure, which states that:
Lemma 1 [16, S-procedure] Define fj(x),xHAjx+ 2<(bHj x) +

cj , where Aj ∈Cn×n is Hermitian, bj ∈Cn, cj ∈R, and x∈Cn,
j=0, 1, 2. Then the following two conditions are equivalent:
1) f0(x) ≥ 0 for every x ∈ Cn such that f1(x) ≥ 0 and f2(x) ≥ 0;
2) There exist λ1, λ2 ≥ 0 such that[

A0 b0

bH0 c0

]
� λ1

[
A1 b1

bH1 c1

]
+ λ2

[
A2 b2

bH2 c2

]
. (17)

By applying S-procedure to (16b)-(16e), (P3) can be alternative-
ly expressed as

(P4) max
W�0,λ�0.t1,{Ri,t2i}

θR1 + (1− θ)R2 (18a)

s. t.

[
−A+λ1Q̃1 +λ2Q̃2 −a

−a −a+Pmax−λ1δ
2
1−λ2δ

2
2

]
�0, (18b)[

Bi+λ3iQ̃1+λ4iQ̃2 bi
bHi bi−Ei−λ3iδ

2
1−λ4iδ

2
2

]
�0, (18c)[

C + λ5Q̃1 + λ6Q̃2 c
cH c− t1 − λ5δ

2
1 − λ6δ

2
2

]
�0, (18d)[

−Di+λ7iQ̃1+λ8iQ̃2 −di
−dHi −di+t2i−λ7iδ

2
1−λ8iδ

2
2

]
�0, (18e)

t1
t2i
≥ 22Ri − 1

Pj
, ∀i, j ∈ {1, 2}, i 6= j. (18f)

where λ , [λ1, λ2, λ3i, λ4i, λ5, λ6, λ7i, λ8i], Q̃1 ,QT
1 Q1, Q̃2 ,

QT
2 Q2. It can be seen that the constraints (18b)-(18e) are now linear,

thus convex, and the only remaining difficulty lies in the (18f).

3.3. Successive Convex Approximation to (P4)

Motivated by [9, 11, 12], we will utilize the SCA algorithm to tack-
le the nonconvex constraints (18f). In order to further reveal the
nonconvex nature of (18f), let us introduce some slack variables s,
ui, vi, and rewrite (P4) as

(P5) max
W�0,λ�0,s,t1,
{Ri,ui,vi,t2i}

θR1 + (1− θ)R2 (19a)

s. t. (18b)− (18e), (19b)
t1 ≥ es, (19c)
t2i ≤ eui , (19d)

22Ri − 1 ≤ evi , (19e)
ui + vi − s ≤ log(Pj), ∀i, j ∈ {1, 2}, i 6= j, (19f)

where the equivalence between (P4) and (P5) is established based on
the fact that the inequality constraints of (19c)-(19f) hold with equal-
ities at the optimal solution. Here, it can be clearly seen that (19d)
and (19e) are of the form of difference of convex functions [12],
which result in the non-convexity issue. Here, a good observation is
that the exponential function admits a linear and locally tight lower
bound by the first-order Taylor approximation, i.e, for all x̄ ∈ R,
ex̄(x− x̄+ 1) ≤ ex. Hence, (19d) and (19e) can be guaranteed by

t2i ≤ eūi(ui − ūi + 1), (20a)

22Ri ≤ ev̄i(vi − v̄i + 1) + 1, (20b)

for i = 1, 2 with any given ūi and v̄i. Noticed that the approxima-
tions in (20) are tight at ui = ūi and vi = v̄i, respectively.

Based on the above approximate constraints and the idea of S-
CA, the problem (P5), hence, (P3) can be iteratively solved through
the following convex problem:
(P6) {W[n], ui[n], vi[n]} = argmax

W�0,λ�0,s,t1,
{Ri,ui,vi,t2i}

θR1 + (1− θ)R2 (21a)

s. t. (18b)− (18e), (19c), (19f), (21b)

t2i ≤ eui[n−1](ui − ui[n− 1] + 1), (21c)

22Ri ≤ evi[n−1](vi − vi[n− 1] + 1) + 1, (21d)

where n is the iteration index. Here, one can see that the iterates
Rsum[n] is nondecreasing. Accordingly, the SCA based algorithm
is summarized in Algorithm 1.
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Algorithm 1 SCA based algorithm for solving (P3)

1: Initialize {ui[0], vi[0]}2i=1; Set n=0;
2: repeat
3: Update {W[n], ui[n], vi[n]}2i=1 by solving (P6);
4: n := n+ 1;
5: until a stopping criterion is met.

3.3.1. Design Feasibility and SCA Initialization

It is readily shown that the design feasibility of (P3) can be checked
by solving the following problem:

(P7) find W, s. t. (16b), (16c) and W � 0. (22)

Besides, a feasible W∗ to (P7) can be used to initialize Algorithm 1
by solving the following two problems

t3 = min
‖e1‖≤δ1,‖e2‖≤δ2

eTCe∗ + 2<{eT c}+ c, (23a)

t4i = max
‖e1‖≤δ1,‖e2‖≤δ2

eTDie
∗ + 2<{eTdi}+ di, (23b)

which can be solved by using S-procedure. Then, from the active-
ness of (19d)-(19f), ui[0] and vi[0] are obtained by

ui[0] = log(t4i), vi[0] = log(Pjt3/t4i). (24)

3.3.2. Convergence Analysis

Due to the limited forwarding power at relay nodes, the set of all
feasible (W, R1, R2) is compact. And using a similar argument as
in [12, Theorem 1], we can draw the following proposition:
Proposition 1 The sequence {θR1[n]+(1−θ)R2[n]} generated by
the proposed Algorithm 1 converges; and every limit point is a KKT
point of (P3).
Proof: Due to the limited space, we omit the detailed proof here. �

From Proposition 1, we adopt the following stopping criteria:
the algorithm continues until Rsum[n]/Rsum[n−1] ≤ 1 + ε is sat-
isfied, where ε is a predetermined parameter of rate precision.

However, it is worthy to remark that the optimal solution W∗

obtained by Algorithm 1 is not necessarily rank-1 (due to SDR). If
so, a possible suboptimal approach is to apply the Gaussian random-
ization [15] to obtain an approximate w∗ for (P2) from W∗.

4. SIMULATION RESULTS

In this section, we present the numerical results of the proposed ro-
bust beamforming design. A system with K = 4 relay nodes and
the power limit Pmax = 1.5 Watt is considered. The channel vec-
tors are randomly generated following the standard complex Gaus-
sian distribution. The channel realizations used in our simulations
are ĥ1 =[1.13+0.19j, 0.02+0.27j, 0.23+0.77j, 0.85+0.51j]T and
ĥ2 =[−0.58+0.45j, 1.44−0.08j, 0.13−0.23j, 1.23+0.24j]T , where
j=
√
−1. Set δi =

√
Kεi, and for convenience, let ε1 = ε2 = ε. In

addition, the noise powers are set to be equal (σ2
i =1 for i=0, 1, 2),

while the rate weight θ is equal to 1/2. The convex optimization
problems are solved by CVX in the simulations.

Fig. 1 compares the cumulative density functions (CDFs) of the
power consumption at relay nodes between nonrobust design and
the proposed robust design over 1000 random channel realizations
with P1 = P2 = E1 = E2 = 1. One can observe that the required
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forwarding power will exceed the power limit with the probability
of 50%, and the dynamic range get larger with larger ε. Meanwhile,
the proposed robust design can always satisfy the power constraint.

Fig. 2 shows the sum rate versus EH powers with E1 =P1 and
E2 = P2. The sum rate increases when E1 and E2 increase, but
rapidly diminishes to zero if E1 or E2 is large. This is due to the
fact that the relays’ power is used to fulfill the EH requirements, and
little left for information transfer. It can also be observed that the
sum rate decreases with the increase of ε, as expected.
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Fig. 3 illustrates the convergence behaviors of Algorithm 1 for
P1 = P2 = E1 = E2 = 1 with different channel error bounds. It
can be seen that Rsum increases monotonically, and the proposed
algorithm converges in few steps in each case.
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