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ABSTRACT

In this paper, we study a relaying network employing a rateless cod-

ing scheme proposed in the literature. We consider the problem of an

energy-efficient operation of the scheme and derive algorithms that

maximize the achievable rate for specified energy-per-bit bounds at

the relay nodes. For this, we identify the rate function as a standard

interference function, which allows to design efficient algorithmic

solutions for solving the problem.

Index Terms— Energy efficiency, relaying systems, rateless

codes, standard interference functions, fixed-point iteration.

1. INTRODUCTION

In this work, we consider the tradeoff between energy efficiency

(EE) and spectral efficiency (SE) [1] in wireless relay networks us-

ing rateless codes. Energy efficiency is measured by the quantity

of energy-per-bit (Eb) and refers to the amount of energy that is re-

quired to reliably communicate one bit of information at a certain

transmission rate. Clearly, we wish Eb to be as small as possible,

while the spectral efficiency (or transmission rate at a given band-

width) should be as high as possible. Unfortunately, in general,

these goals contradict each other—there is a tradeoff between the

two quantities, commonly referred to as the EE-SE tradeoff [1]. The

issue of energy-efficiency is becoming a more and more important

aspect of communication systems, especially in the context of en-

vironmental challenges and new types of wireless applications [1].

For many applications, it is important to consider not only the trans-

mission rate, but also the energy expenditure. For example, if the

nodes are energy-limited since they are powered by batteries or are

recharged in an irregular fashion, it is in general more desirable to

limit the energy spent for transmission instead of merely maximiz-

ing the transmission rates. Situations of this kind are likely to occur

e.g. in sensor networks or when using flexible nodes that do not have

access to a constant power supply.

Relation to prior work. The problem of maximizing the trans-

mission rate under given constraints on the energy-per-bit values has

been studied in [2] for a system with two relay nodes, the so-called

diamond network. There, the theory of standard interference func-

tions [3] [4] was successfully applied in order to develop algorithmic
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Fig. 1: System model: A message is to be conveyed from sender S

to the destination node D via relay nodes Rk.

solutions for the optimization problem. In this paper, we demon-

strate that the theory of standard interference functions can also serve

as a valuable tool for finding energy-aware operating points in re-

laying systems employing rateless codes [5] [6]. This interesting

coding technique is subject to increasing attention, especially con-

cerning applications in multicast and relaying systems [7] [8] [9].

Here, we study the rateless relaying scheme proposed in [9] in the

situation of energy-per-bit constraints at the relay nodes.

Organization. The paper is organized as follows: Section 2

introduces the system model and Section 3 the main optimization

problem investigated in this paper. Corresponding algorithmic solu-

tions are given in Section 4 and numerically evaluated in Section 5.

Finally, Section 6 concludes the paper.

Notation. We use the notation C(x) = log(1 + x) through-

out the paper; logarithms are taken to base e and all data rates ex-

pressed in nats. The set of positive reals is denoted by R++ =
{x ∈ R : x > 0}. For two vectors x,y, we denote component-wise

inequalities as x < q,x ≤ q etc. Moreover, xt denotes the trans-

pose of x, and xk its kth component. The vector with all of its n
entries equal to one is denoted by 1n. Similarly, the all zero vector

is written as 0n.

2. SYSTEMMODEL

The system model and the mode of operation is mostly the same

as described in [9]; we now give our notation and briefly state the

most important facts and assumptions. For further details and a more

elaborate discussion, we refer the reader to [9].

In this paper, we study a relaying system consisting of a trans-

mitter (source node S) which intends to convey a message to a des-
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tination node D. All nodes are restricted to be in half-duplex mode,

and the message is to be transported with the help of a number ofM
relaying stations, labeled as Rk for k ∈ {1, . . . ,M} (cf. Figure 1).
The channels between all nodes are given by frequency-flat additive

white Gaussian noise (AWGN) channels which are assumed to be

constant during the transmission of at least one message. For nodes

P,Q ∈ {S,D,R1, . . . ,RM}, gPQ ∈ C denotes the signal-to-noise

ratio at node Q when node P transmits with unit power. We assume

that the values gPQ are known at all nodes (as opposed to the as-

sumption in [9]).1 Without loss of generality, we assume an ordering

of the relay nodes such that gSRk
≥ gSRk+1 for k ∈ {1, . . . ,M−1}.

The channels between S and D and from the relays to the D are as-

sumed to be orthogonal, which is achieved in [9] by employing relay-

specific spreading sequences. The power constraint at the source

node S is denoted by pS > 0, while the power constraints at the

relay nodes are collected in the vector p ∈ R
M
++, where the mth

component pm specifies the power constraint at relay node Rm. The

vector of all powers (both at the source and the relays) is written as

P =
(
pS, p1, . . . , pM

)t
∈ R

M+1
++ .

The general transmission scheme is the synchronous operation

mode as described in [9] (we do not consider the asynchronous mode

here) and works as follows: The source encodes the message using

a rateless code using a length-k source message vector and keeps

on transmitting until the destination node D has decoded the mes-

sage. In the so-called listening phase, each relay Rm listens to the

source transmission until it has successfully decoded the message.

Thereupon, the relay node enters the collaboration phase and

• re-encodes the message using its individual rateless code and

transmits it employing its individual spreading sequence with

power rmpm, where rm ∈ [0, 1].
• re-encodes the message using the same rateless code as the

source and transmits it employing the source spreading se-

quence with power (1− rm)pm.

In order to combine the source and relay signals that have been trans-

mitted using the same spreading sequence, the destination node D

uses a Rake receiver; this is called energy combining. The combi-

nation of data obtained from different spreading sequences / rateless

codes is referred to as information combining. The scheme in [9]

uses both energy combining and information combining; hence, it

is called mixed combining and steered by the vector of power ratios

r = (r1, . . . , rM )t ∈ [0, 1]M . We assume the mixed combining

vector r to be arbitrary, but fixed in this work.

The transmission is terminated once the destination node D has

decoded the message. Let n be the total number of time slots passed

when the destination decodes the message, and let N ≤ M be the

number of relays that have decoded the message during this time. By

nm, we denote the number of time slots that have passed when relay

node Rm decodes the message. Then the time fraction during which

relay Rm listens to the source transmission is given by λm = nm

n
,

whereas the transmission rate is R = k
n
. Writing 2

Ji = C

(

pSgSD +

i∑

j=1

rjpjgRjD

)

+

i∑

j=1

C
(
(1− rj)pjgRjD

)
(1)

for the collaborative capacity of the relays R1, . . . ,Ri, the transmis-

sion rate RN for N decoding relays must satisfy the N + 1 con-

1The extension to the case of fading channels without channel state infor-
mation at the transmitters is possible and subject to ongoing work.

2We do not always explicitly state the dependence on the power alloca-
tion, and use expressions such as Ji and Ji(P) interchangeably.

straints (cf. [9])

RN ≤ λ1C0 +

N−1∑

m=1

(λm+1 − λm)Jm + (1− λN )JN , (2)

RN ≤ λmCm for allm ∈ {1, . . . , N}. (3)

Here, we used the short-hand notation C0 = C(pSgSD) and Cm =
C(pSgSRm ) for m ∈ {1, . . . , N} for the capacities of the links orig-
inating from the source node S. The optimal rate is obtained for

equality in (2)-(3), so that by solving for RN , we obtain

RN (P) =
JN

1− C0
C1

+
∑N−1

m=1

(
1

Cm
− 1

Cm+1

)
Jm + JN

CN

. (4)

The optimal number of decoding relays is given by N(P) =
max{m ∈ {1, . . . ,M} : λm ≤ 1}, resulting in the optimal rate

R(P) = RN(P)(P). This rate, according to [9], “is an important

measure as, in principle, the application of rateless codes provides

the possibility of self-adaptation of the actual code rate arbitrarily

close to” R(P). In this paper, we take this theoretically achievable

rate as the basis for our energy efficiency analysis. Since this rate

can be realized using only the first N(p) relay nodes, the power

allocation s(p) := (p1, . . . , pN (p), 0, . . . , 0) achieves the same

performance as p.

3. ENERGY EFFICIENCY / PROBLEM FORMULATION

We now introduce the quantities and problems related to energy-

efficiency that are central in this paper. Here, we consider energy

expenditure at the relay nodes only and assume that the source node

transmit power pS is fixed. This assumption is reasonable, for exam-

ple, in the situation where the source node S is connected to a power

supply, whereas the relay nodes are cheap nodes that are deployed

in an ad-hoc manner and have limited energy available. Moreover, if

the source energy usage also has to be taken into account, the prob-

lem left after solving the relay power problem is one-dimensional

and can be solved by simple line search or bisection methods. Ac-

cordingly, in the following, all quantities will be written as a function

of the relay powers p only instead of P.

For the power allocation p at the relays, the quantities

ERm(p) =
(1− λm(p))pm

R(p)
for m ∈ {1, . . . , N(p)}. (5)

measure the energy spent for each transmitted bit at each relay node

Rm.

If both energy efficiency and spectral efficiency are of interest

(as discussed in the introduction), it is reasonable to consider the fol-

lowing problem: given upper bounds γRm > 0,m ∈ {1, . . . , N},
on the energy-per-bit at the relay nodes Rm, maximize the transmis-

sion rate subject to these constraints on the energy usage. Mathe-

matically, the problem is stated as follows:

Problem 1 : maximize
p∈RM

++

R(p)

subject to ERm (p) ≤ γRm ,m ∈ {1, . . . , N(p)}.

In the next section, we propose an algorithmic solution for this prob-

lem.
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4. OPTIMIZATION FOR RELAY EB CONSTRAINTS

We first study a version of Problem 1 in which we relax the opti-

mization constraints at the relay nodes. For this relaxed problem, we

give a fixed-point iteration algorithm and prove that, under feasible

constraints, it converges to the unique optimal solution of the relaxed

problem (which also constitutes a suboptimal solution of Problem 1).

As will be described in detail below, the crucial insight here is that

R satisfies the properties of a standard interference function [3] [4].

Motivated by the solution for the relaxed problem, we argue that

a slight modification of the fixed-point iteration results in an algo-

rithmic solution of Problem 1. Although numerical studies suggest

convergence to a fixed point as well, proving convergence remains

an open problem. To formulate the relaxed problem, we let

ÊRm(p) =
pm
R(p)

for m ∈ {1, . . . ,M} (6)

and define the relaxed problem as follows:

Problem 1a : maximize
p∈RM

++

R(p)

subject to ÊRm (p) ≤ γRm ,m ∈ {1, . . . ,M}.

The algorithmic solution to Problem 1a is motivated by an anal-

ogy to the problem of optimizing under SINR constraints [3] [4],

which can be loosely described as follows: SINR expressions are

functions of power and given by the ratio of received signal power

to interference; if the interference satisfies the standard interference

function properties, a simple fixed-point algorithm convergences to

a unique fixed point. As a fraction of powers and rate expressions,

the constraints in Problem 1a have a similar structure as the SINR

constraints. This leads to the idea of using a fixed-point iteration ap-

proach for the problem at hand as well. It is worth mentioning that

even though R has no direct interpretation of interference here, we

can still exploit its structural properties. To be precise, we make use

of the following interesting property of the rate function R:

Proposition 1. The function R is a standard interference function

in the relay powers p, i.e., has the following properties:

1. R(p) > 0 for all p > 0 (positivity)

2. αR(p) > R(αp) for α > 1 (scalability)

3. p ≤ q⇒ R(p) ≤ R(q) (monotonicity)

Proof. Monotonicity holds since increasing the power constraint at

one relay can only shorten the time the destination node D requires

to decode the message. The positivity property is also obvious. For

scalability, note that αJi(p) > Ji(αp) can easily be derived using

αC(X) > C(αx) for α > 1, x > 0 (cf. [2]). As a consequence,

writing ∆m = 1
Cm
− 1

Cm+1
, we obtain for N ∈ {1, . . . ,M} and

any fixed α > 1 and p:

αRN (p) =
αJN (p)

1− C0
C1

+
∑N−1

m=1 ∆mJm(p) + JN (p)
CN

>
JN (αp)

1− C0
C1

+
∑N−1

m=1 ∆mJm(p) + JN (p)
CN

≥
JN (αp)

1− C0
C1

+
∑N−1

m=1 ∆mJm(αp) + JN (αp)
CN

= RN (αp). (7)

Scalability of R can then be shown using continuity of αR(p) −
R(αp) in α.

Algorithm 1a (choose ǫ small, e.g. ǫ = 10−6)

1: q = 10−6 · 1M ⊲ initial value is arbitrary

2: repeat

3: p← q

4: q← (γR1R(p), . . . , γRM
R(p))t

5: until max
1≤k≤M

|qk − pk| < ǫ · max
1≤l≤M

pl

6: return s(q)

We now show how these properties can be applied in order to

solve Problem 1a.

The first important insight is that each solution p of Problem

1a must be located on the boundary of the constraint set in the fol-

lowing sense: For each optimal power allocation p, there is a power

allocation p̂ such that R(p̂) = R(p) and

ÊRm(p̂) = γRm for allm ∈ {1, . . . ,M}. (8)

This can easily be seen by the following argument: assume a solu-

tionp of Problem 1a such that one of the constraints is not active, i.e.

is satisfied with a strict inequality. Due to monotonicity of R (prop-

erty 3. of a standard interference function), we can then immediately

find a solution p′ ≥ p with R(p′) ≥ R(p) by increasing the corre-

sponding power component until the constraint holds with equality.

Note that we invoke essentially the same argument as applied for

solving a power minimization problem under QoS constraints [4].

Secondly, we can rewrite (8) as a fixed-point equation

p̂ = (γR1R(p̂), . . . , γRM
R(p̂))t. (9)

Now R is as standard interference function. Hence, it follows from

the theory of standard interference functions (see e.g. [3] or [4] for

details), that if a solution of the fixed-point equation exists (i.e., if

Problem 1a is feasible), then it is unique, and the standard fixed-

point iteration converges to the solution of (9). This leads to Algo-

rithm 1a. We summarize the above considerations in the following

Proposition:

Proposition 2. If Problem 1a is feasible for the Eb constraints

γRm > 0,m ∈ {1, . . . , N}, then Algorithm 1a converges to the op-

timal solution of Problem 1a, which is also a feasible (but generally

suboptimal) power allocation for Problem 1.

As mentioned above already, the operation and derivation of Al-

gorithm 1a also motivates an algorithmic approach for Problem 1.

We elaborate on this in the following. For this, note that λm(p) =
R(p)
Cm

, from which

ERm(p)

pm
=

(1− λm(p))

R(p)
=

1

R(p)
−

1

Cm

, (10)

which is monotonically decreasing in each component of p by

monotonicity of R. Hence, applying the same line of argument as

for the relaxed problem given above, it follows that p is a solution

of Problem 1 if and only if there exists a power allocation p̂ that

satisfies the fixed-point equation

p̂ =

(
γR1R(p̂)

1− λ1(p̂)
, . . . ,

γRN(p̂)
R(p̂)

1− λN(p̂)(p̂)
, p̂N(p̂)+1, . . . , p̂M

)t

.

(11)

Even without proof of uniqueness of a solution of (11) or of

convergence of the fixed-point iteration to it, we can still apply it in
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Algorithm 1 (choose ǫ small, e.g. ǫ = 10−6 and maxit ∈ N, e.g.

maxit = 1000)

1: q = 10−6 · 1M ⊲ initial value is arbitrary

2: n = 0 ⊲ counts number of iterations

3: repeat

4: n← n+ 1
5: p← q

6: q←

(
γR1

R(p)

1−λ1(p)
, . . . ,

γRN(p)
R(p)

1−λN(p)(p)
, pN(p)+1, . . . , pM

)t

7: until max
1≤k≤M

|qk − pk| < ǫ · max
1≤l≤M

pl or n ≥ maxit

8: if n < maxit then
9: return s(q)
10: else

11: return “no convergence“

12: end if

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

γ
R1

γ
R2

γ
R3

γ
R4

γ
R5

γ
R6

γ
R7

γ
R8

Number of iterations

E
R

m

/E
0

Fig. 2: Convergence of Algorithm 1a (solid line / diamonds) and

Algorithm 1 (dashed line / squares) to the required Eb values.

order to try to find a solution of Problem 1. For this, we adjust the

fixed-point iteration step according to (11) (and add a maximum iter-

ation counter to ensure termination), resulting in Algorithm 1. Note

that numerical evidence points to the fact that Algorithm 1 generally

convergences to a solution of Problem 1. Even if this was not the

case, we can still apply the following reasonable procedure: Apply

both Algorithm 1 and Algorithm 1a.

• If Algorithm 1 converges, compare the two outcomes and use

the power allocation outcome with higher rate.

• If Algorithm 1 does not convergence, use the power alloca-

tion found by Algorithm 1a as a suboptimal solution.

5. NUMERICAL RESULTS

In this section, we provide some numerical results demonstrating the

algorithms presented above.

For the purpose of normalization, we choose pS = 1 and gSD =
1, and the other SNR values gPQ are obtained using the following

simple path loss model: For transmit power Pt, the received power

at distance d from the transmitter is given by Pr =
(
d0
d

)β
Pt. We

use M = 8 relay nodes, which are arranged as depicted in Figure

1, where the distance between S and D is 5000m, whereas the two
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12
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16
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R
/R

0

 

 

Algorithm 1a

Algorithm 1

Fig. 3: The rate achieved in each iteration step of Algorithm 1a and

Algorithm 1, respectively.

outermost relay nodes are separated by 500m. For ease of display,

we normalize all rate and energy-per-bit values to the correspond-

ing values of the direct link between S and D, which we denote by

R0 = C(1) and E0 = 1
R0

, respectively. The Eb requirements γRm

were chosen arbitrarily out of the interval [0, 5 ·E0]; the used values
are displayed next to the right border in Figure 2. Note that for Al-

gorithm 1a, the relaysR7 and R8 are “turned off” in the final step as

a result of applying the function s. Finally, we use r = 1
2
18 as the

combining vector.

For this setup, Figure 2 displays the Eb values (relative to E0)

ERm(p)/E0 andERm(p) at each iteration step of Algorithm 1a and

Algorithm 1, respectively. We can see that both algorithms converge

very fast to the specified Eb values, i.e. to solutions of the fixed-point

equations (9) and (11), respectively.

Figure 3 compares the rate obtained in each iteration step, both

for Algorithm 1a and Algorithm 1. It is interesting to see that the

performance of Algorithm 1a in terms of rate is almost identical to

the performance of Algorithm 1. This supports the potential appli-

cability of using Algorithm 1a as a heuristic suboptimal solution for

Problem 1.

6. CONCLUSIONS

In this paper, we studied a relaying network employing the rateless

coding scheme proposed in [9]. in maximizing the transmission rate

under restrictions on the energy that may be spent per transmitted

bit at each of the relay nodes. For a problem with relaxed con-

straints, we showed that a simple fixed-point iteration converges to

the optimal solution. This result was obtained by identifying the rate

function as a standard interference function. This approach does

not only provide a heuristic (generally suboptimal) solution for the

actual problem, but also motivates an algorithmic approach for the

solution for it by a slight modification of the fixed-point iteration.

While numerical evidence suggests convergence to a unique fixed

point for this algorithm as well, we could not prove it yet. This

poses an interesting open question for future work.

For future work, we will also consider the case of fading chan-

nels, where the transmitters do not have access to channel state infor-

mation. Other directions for further investigations are the inclusion

of energy constraints at the source node and the consideration of

hardware energy consumption.
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