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ABSTRACT

In this paper, we study the problem of oscillator phase noise
(PN) estimation in coordinated multi-point (CoMP) trans-
mission systems. Specifically, we investigate the effect of
phase synchronization between coordinated base stations
(BSs) on PN estimation at the user receiver. In this respect,
the Bayesian Cramér-Rao bound for PN estimation is derived
which is a function of the level of phase synchronization be-
tween the coordinated BSs. Results show that quality of BS
synchronization has a significant effect on the PN estimation.

Index Terms— Coordinated multi-point (CoMP), Bayesian
Cramér-Rao Bound (BCRB), Correlated Oscillators, MIMO,
Synchronization

1. INTRODUCTION

Coordinated multi-point (CoMP) transmission is an approach
to increase data transmission rate and improve quality of ser-
vice in modern cellular communication networks [1–3]. With
CoMP, data is transmitted jointly from multiple coordinated
base stations (BSs) at the same time, thereby improving the
quality of the received signal at the user receiver [1, 4].

One of the major challenges in CoMP joint transmission
is carrier phase (and frequency) synchronization [3–7]. The
synchronization problem in CoMP is two-fold. First, radio
frequency local oscillators (LOs) at the coordinated BSs must
be synchronized. Second, LO at the user receiver must be
synchronized with those at the BSs. In general, oscillator
phase noise (PN) evolves fast and it is not possible to fully
synchronize the BSs only by exchanging the backhaul infor-
mation [8, 9]. To achieve an acceptable level of phase syn-
chronization, very low-phase-noise LOs must be employed,
which may be cost inefficient [3, 5]. An alternative approach
is to track the overall PN at the user receiver.

Carrier phase synchronization in single input-single out-
put (SISO) and multiple input-multiple output (MIMO) sys-
tems has been extensively studied in the literature (e.g., [9–
18] and references therein). The effect of PN on the per-
formance of MIMO networks when transmitters are not syn-
chronized has been studied in [9]. Authors in [16] have stud-
ied bounds on the performance of PN estimators in a similar
MIMO setup.
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Fig. 1: Structure of the studied two BSs-one user CoMP system.

In this paper, we study how PN estimation in the down-
link of CoMP joint transmission systems (i.e., at the user’s
receiver) is affected by synchronizing the BSs. To do so, we
introduce a synchronization factor that models various levels
of phase synchronization between the BSs. Then, we derive
Bayesian Cramér-Rao bound (BCRB) on the performance of
data-aided (DA) and non-data-aided (NDA) PN estimators in
a setup with two BSs and one user receiver (Fig. 1). We show
that PN, when LOs are not phase synchronized, not only re-
sults in the phase rotation of received signal, but also leads to
amplitude error that is analytically characterized in this work.
Finally, we verify our results for various PN variances and
synchronization factors by means of simulations. 1

2. SYSTEM MODEL

Consider the joint transmission of a sequence of complex-
valued modulated symbols s = [s1, . . . , sN ] in a two-BSs
CoMP system. The digital base-band received signal at the
user’s receiver y = [y1, . . . , yN ] is modeled by

yn = sn
(
h1e

j(

�φ
[1]
n︷ ︸︸ ︷

φt1
n + φr

n) + h2e
j(

�φ
[2]
n︷ ︸︸ ︷

φt2
n + φr

n)
)
+ wn, (1)

where n = {1, . . . , N}, sn is the nth complex modulated
transmitted symbol from constellation C, and h1 and h2 are
the quasi-static channel gains from the BSs’ antennas to the
receiver’s antenna. PN samples at the output of LOs at the
first BS, second BS and receiver are denoted as φt1

n , φt2
n

and φr
n, respectively. Further, wn denotes the zero-mean

1Notations: Italic letters (x) are scalar variables, bold letters (x) are vec-
tors, bold upper case letters (X) are matrices, ([X]a,b) denotes the (a, b)th

entry of matrix X, E[·] denotes the statistical expectation, �(·), �(·), and
∠(·) are real part, imaginary part, and angle of complex values, (·)∗ , and
(·)T denote conjugate and transpose, respectively and Δx

x(·) denotes the
second derivative with respect to vector x.
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circularly symmetric complex-valued additive white Gaus-
sian noise (AWGN) with variance σ2

w at the user’s receiver. It
should be noted that channel state information (CSI) is shared
among the coordinated BSs [4]. Thus, in our study h 1 and h2

are known and set to be unity. It is straightforward to gener-
alize the results to the scenario where h1 and h2 can take any
arbitrary value. Furthermore, in this paper we study the case
where PN evolves much faster than the channel fading, which
is in line with the assumptions in [4, 9, 16, 19].

PN is modeled as Wiener processes

φi
n = φi

n−1 + ζin−1, i ∈ {t1, t2, r}, (2)

where ζin−1 is the PN innovation process with zero-mean
Gaussian distribution and variance σ2

ζ [20–22]. The phase
synchronizing the LOs at the BSs leads to correlated PNs
which are modeled as two correlated Wiener processes.
That is, we set the PN innovations ζ t1n−1 = ζ̃t1n−1 and
ζt2n−1 = ρζ̃t1n−1 +

√
1− ρζ̃t2n−1, where ζ̃t1n−1 and ζ̃t2n−1 are two

independent zero-mean Gaussian processes with variance σ 2
ζ ,

ρ ∈ [0, 1] denotes the correlation coefficient, and it can be
shown that Cov(ζt1n−1, ζ

t2
n−1) = ρσ2

ζ [23]. Setting ρ = 1

results in ζt2n−1 = ζt1n−1, the fully phase synchronized LOs at
the BSs, while ρ = 0 leads to uncorrelated PN innovations
that models unsynchronized LOs. In order to study the effect
of PN on the received signal, we are interested in the perfor-
mance of estimator of φ = [φ

[1]
1 , . . . , φ

[1]
N , φ

[2]
1 , . . . , φ

[2]
N ]T ,

where φ[1]
n and φ

[2]
n are defined in (1).

3. REVIEW OF BAYESIAN CRAMÉR-RAO BOUND

Bayesian Cramér-Rao bound (BCRB) gives a tight lower
bound on the mean square error (MSE) of random parameter
estimation [24] and it satisfies the following inequality:

Ey,φ

[(
φ̂(y) − φ

)(
φ̂(y) − φ

)T]
≥ B−1,

B = Eφ [F(φ)] + Eφ

[
−Δφ

φ log f(φ)
]
, (3)

where φ̂ denotes an estimator of φ, B is the Bayesian infor-
mation matrix (BIM), f(φ) is the prior distribution of φ, and
F(φ) is the so called Fisher information matrix (FIM) that for
the DA case is defined as

FDA(φ) = Ey|φ,s

[
−Δφ

φ log f(y|φ, s)
]
. (4)

For the NDA scenario, FIM is

FNDA(φ) = Ey|φ
[
−Δφ

φ log f(y|φ)
]
, (5)

where a modified version of NDA FIM is

FMBCRB(φ) = Es

[
Ey|φ,s

[
−Δφ

φ log f(y|φ, s)
]]

, (6)

that usually has a simpler analytical form compared to
FNDA(φ) and the corresponding bound is equivalently called
modified Bayesian Cramér-Rao bound (MBCRB) [25].

4. PHASE NOISE ESTIMATION IN COMP
In this section, we derive analytical expressions of the DA and
NDA BCRBs for PN estimation in CoMP. First, we find the
terms involving in calculation of the BIM (3).

4.1. Calculation of Eφ

[
−Δφ

φ log f(φ)
]

According to (1) and (2), we have

φ[1]
n = φ

[t1]
1 +

n−1∑
i=1

ζ
[t1]
i + φ

[r]
1 +

n−1∑
i=1

ζ
[r]
i ,

φ[2]
n = φ

[t2]
1 +

n−1∑
i=1

ζ
[t2]
i + φ

[r]
1 +

n−1∑
i=1

ζ
[r]
i , (7)

where initial PN parameters φ[t1]
1 , φ[t2]

1 and φ
[r1]
1 are modeled

as zero-mean Gaussian random variables with a high vari-
ance2, denoted as σ2

1 . Based on (7), we can show that φ has a
multivariate Gaussian distribution f(φ) = N (φ;0,C) where
the covariance matrix C follows the form

C =

[
C1 C2

C3 C4

]
, (8)

and

[C1]l,k = [C4]l,k = 2(σ2
0 + σ2

ζ min(l − 1, k − 1)),

[C2]l,k = [C3]l,k = (1 + ρ)(σ2
0 + σ2

ζ min(l − 1, k − 1)),

l, k ∈ {1, . . . , N}. (9)

Based on definition of f(φ), it is straightforward to show that

Eφ

[
−Δφ

φ log f(φ)
]
= C−1. (10)

4.2. Calculation of Eφ [F(φ)]

In order to obtain FIM, we need to compute the likelihood
function. When s is known, the likelihood function reads

f(y|φ, s) =
N∏

n=1

f(yn|φ[1]
n , φ[2]

n , sn)

=

(
1

σ2
wπ

)N N∏
n=1

e
− |yn|2+2|sn|2(1+cos(φ

[1]
n −φ

[2]
n ))

σ2
w

× e
2

σ2
w
�{yns

∗
n(e

−jφ
[1]
n +e−jφ

[2]
n )}

. (11)

To find the likelihood when s is not known, one needs to take
the expectation of the likelihood at time n with respect to all
possible transmitted symbols

f(y|φ) =
N∏

n=1

∑
sn∈C

1

M
f(yn|φ[1]

n , φ[2]
n , sn)

=

(
1

σ2
wπ

)N N∏
n=1

∑
sn∈C

1

M
e
− |yn|2+2|sn|2(1+cos(φ

[1]
n −φ

[2]
n ))

σ2
w

× e
2

σ2
w
�{yns

∗
n(e

−jφ
[1]
n +e−jφ

[2]
n )}

, (12)

2We consider a flat non-informative prior [26,27] for the initial PN values.
To simplify the derivations, it is modeled by a Gaussian distribution with a
high variance that behaves similar to a flat prior over a certain interval.
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where M is the constellation order. Using (11), one can show
that for the DA BCRB and MBCRB cases

Eφ [F(φ)] =

[
Γ 0
0 Γ

]
, (13)

where Γ is a diagonal matrix and

[Γ]n,n = E

[
−∂2 log f(yn|φ[1]

n , φ
[2]
n , sn)

∂φ
[1]
n ∂φ

[2]
n

]
. (14)

The diagonal elements of Γ have the following analytical
forms:

DA : [Γ]n,n =
2|sn|2
σ2
w

MBCRB : [Γ]n,n =
2Es

σ2
w

, (15)

where Es is the average symbol energy of the constellation.
For the standard NDA BCRB

Eφ [F(φ)] =

[
γ11I γ12I
γ21I γ22I

]
, (16)

where

γij = E

[
−∂2 log f(yn|φ[1]

n , φ
[2]
n )

∂φ
[i]
n ∂φ

[j]
n

]
i, j ∈ {1, 2}, (17)

and I denotes the identity matrix. Derivatives in (17) can be
expressed as

∂2 log f(yn|φ[1]
n , φ

[2]
n )

∂φ
[j]
n ∂φ

[i]
n

=

∑
sn∈C

∂2fn

∂φ
[j]
n ∂φ

[i]
n∑

sn∈C
fn

−

(∑
sn∈C

∂fn

∂φ
[j]
n

)(∑
sn∈C

∂fn

∂φ
[i]
n

)
(∑

sn∈C
fn

)2 ,

(18)

where fn � f(yn|φ[1]
n , φ

[2]
n , sn). Although the first and sec-

ond derivatives of fn in (18) have analytical forms, (17) does
not have a general closed-from solution and γ ij must be com-
puted by means of numerical methods.

Now that terms contributing to BIM are computed for dif-
ferent scenarios, corresponding bounds can be obtained by
inverting the BIMs. In the next section, we use the computed
bounds to study the effect of residual PN estimation errors on
the amplitude of the received signals.

5. RESIDUAL AMPLITUDE NOISE

Study of the PN-affected SISO systems shows that PN only
affects phase of the transmitted symbols [17,28]. On the other
hand, in a CoMP system also the amplitude is affected. Con-
sider a scenario where we use a PN estimator that reaches the
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Fig. 2: BCRB vs. symbol index in a block, ρ = 0.5, σ2ζ = 10−3, SNR =

5 dB.

derived Cramér-Rao bounds. We define the estimated PNs at
time n as φ̂

[1]
n and φ̂

[2]
n , while the PN estimation errors are

denoted as ε
[1]
n � (φ

[1]
n − φ̂

[1]
n ) and ε

[2]
n � (φ

[2]
n − φ̂

[2]
n ) and

modeled as Gaussian random variables. The amplitude of the
nth received signal, distorted by residual PN errors, can be
written as

|yn| = |sn
(
ejε

[1]
n + ejε

[2]
n

)
+ wn|

=
∣∣∣|sn||ejε[1]n + ejε

[2]
n |ej(∠sn+∠(ejε

[1]
n +ejε

[2]
n )) + wn

∣∣∣
=
√
(2|sn| cos(ε̃n) + �{w′

n})2 + �2{w′
n}

(a)≈ 2|sn| cos(ε̃n) + �{w′
n}

(b)≈ 2|sn|(1− ε̃2n
2
) + �{w′

n}
= 2|sn| − σ2

ε̃nqn|sn|+ �{w′
n}, (19)

where �{w′
n} = �{wne

j(∠sn+∠(ejε
[1]
n +ejε

[2]
n ))} is a zero-

mean real Gaussian random variable with variance σ 2
n/2,

ε̃n � (ε
[1]
n − ε

[2]
n )/2 has a Gaussian distribution f(ε̃n) =

N (ε̃n; 0, σ
2
ε̃n
), where σ2

ε̃n
= (σ2

ε
[1]
n

+σ2

ε
[2]
n

−2Cov(ε
[1]
n , ε

[2]
n ))/4

and its value can be computed from the inverse of BIM,
and qn is a random variable with chi-squared distribution:
qn ∼ χ2

1. Approximations (a) and (b) in (19) are based
on high signal to noise ratio (SNR) and small PN error as-
sumptions, respectively which are validated in the simulation
section. In (19), σ2

ε̃n
qn|sn| is the amplitude noise due to the

PN estimation errors that has a chi-squared distribution and
is a function of transmitted symbol’s amplitude and σ 2

ε̃n
.

6. SIMULATION RESULTS

In the following section, we present simulation results of the
computed bounds for various signal constellations and other
system parameters. According to (15), the DA BCRB is a
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function of the instantaneous amplitudes of the transmitted
sequence of symbols. Therefore, we only present the results
for the NDA cases that depend on the average energy of the
constellation. Expression (1) shows that our system model

for known channel gains is symmetric in φ
[1]
n and φ

[2]
n which

results in identical estimation performance for these parame-
ters.

Fig. 2 compares the behavior of standard NDA BCRB
and MBCRB for estimation of [φ

[1]
1 , . . . , φ

[1]
N ]T for various

block lengths and constellations. This figure shows, although
MBCRB has a simpler analytical form, it is a looser bound
compare to the exact NDA BCRB. Moreover, NDA 16QAM
has much higher MSE compared to NDA QPSK. This is due
to the fact that by increasing the constellation order in the
NDA case, the probability of making mistakes between the
symbols increases that severely impacts the performance of
PN estimation. In addition, Fig. 2 shows that increasing the
block length improves the PN estimation which is because of
employing more observation symbols.

Fig. 3 illustrates the MSE of estimating φ
[1]
n=50 for dif-

ferent constellations as a function of SNR, where the block
length is N = 100. In general, by increasing the SNR, obser-
vations become more reliable and MSE of the NDA PN esti-
mation gets smaller. This figure also shows that MBCRB is a
tight bound for NDA PN estimation when SNR is high. Sim-
ilar results has been reported for the SISO systems [29, 30].

Fig. 4 depicts the effect of changing σ2
ζ and ρ on the PN

estimation performance. First, it can be seen that by decreas-
ing σ2

ζ the MSE has been also reduced that follows our ex-
pectations; when PN evolves slower, it can be estimated more
accurately. Second, this figure shows that by better synchro-
nization of BSs (increasing ρ), the PN estimation performance
is improved. This improvement is more prominent when LOs
have higher PN variance. For example, when σ 2

ζ = 10−3

rad2 and BSs are fully synchronized (ρ = 1), there is almost
1.5 dB improvement in the MSE comparing to the unsynchro-
nized case (ρ = 0). However, this difference is 2 dB when
σ2
ζ = 10−2 rad2.

Fig. 5 shows the effect of changing ρ on the amplitude
noise. By increasing ρ to 1, σ2

ε̃n
tends to very small values

that results in negligible amplitude noise. This result implies
that increasing ρ not only improves the PN estimation per-
formance (see Fig. 4), but also it increases the correlation
between ε

[1]
n and ε

[2]
n that results in smaller σ2

ζ .

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the effect of synchronization
of coordinated BSs on the PN estimation at the user receiver.
To this end, we have derived the DA and NDA BCRBs for
the PN estimation in a CoMP system, valid for any arbitrary
modulation format. Results show synchronization of BSs has
a significant effect on the PN estimation performance and also
the amplitude distortion of the received signal.

To extend this work, it is possible to generalize the results
to the case where arbitrary number of BSs cooperate. In such
a scenario, if the BSs are not fully synchronized, the number
of estimated parameters of interest increases that may result in
a higher overall estimation error. Consequently, BSs synchro-
nization would become more important in such scenarios.
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