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ABSTRACT

The aim of this paper is to derive a Ziv-Zakai lower bound (ZZLB)

for the time of arrival (TOA) estimation in single-path (SP) additive

white Gaussian noise (AWGN) channels and in the presence of mul-

tiuser interference (MUI). Time-hopping pulse position modulated

(TH-PPM) ultra-wideband (UWB) signals are considered. Follow-

ing a classical approach and extending it for the scenario under con-

sideration, we compute the ZZLB by converting the related estima-

tion problem into a binary detection one. To obtain the bit error rate

(BER) of the corresponding detection problem, we both consider the

exact handling of the MUI and the modeling of the MUI by means

of a Gaussian approximation (GA). We compare the performance of

the single-user maximum likelihood (ML) TOA estimator with the

bounds.

Index Terms— Time of arrival estimation, Ultra wideband com-

munication, Multiple access interference, Ziv-Zakai lower bound

1. INTRODUCTION

Ultra-wideband (UWB) signals provide very accurate positioning

given their short duration pulses. The interest in the use of UWB

for localization has grown since the Federal Communications Com-

mission (FCC) allowed unlicensed operations between 3.1 and 10.6

GHz in the United States, in 2002.

Different authors investigated lower bounds for UWB signals.

For instance, in [1] the baseline expressions for the Cramèr-Rao

lower bound (CRLB) and the Ziv-Zakai Lower Bound (ZZLB) are

given for both single-path (SP) and multipath (MP) channels. In

[2] the authors propose lower bounds for realistic UWB channels.

Specifically, they report ZZLB averaged over several channel im-

pulse response (CIR) realizations and they present an approximation

of the error probability. Also for realistic channels, in [3], the CRLBs

are given when up to three overlapping MP components (MPCs) are

considered. In [4] the ZZLB is derived for convolutive random chan-

nels with instantaneous channel knowledge at the receiver, while in

[5] the topic is readdressed considering statistical knowledge of the

channels.

In the current paper we address the particular issue of computing

the ZZLB in additive white Gaussian noise (AWGN) plus multiuser

interference (MUI) channels for time-hopping pulse position modu-

lation (TH-PPM) signals. To the best of our knowledge, this has not

been examined before. However, the bit error rate (BER) analysis
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of TH-PPM signals in the presence of MUI has been widely studied.

Since the ZZLB can be computed by transforming the estimation

performance problem into a binary detection one, we capitalize on

the existing BER analysis to derive the ZZLB in an AWGN plus MUI

environment.

Regarding MUI modeling, the error probability when the inter-

ference is assumed to be a Gaussian process is given in [6]. Never-

theless, it is well known that the probability density function (pdf)

of a TH-PPM UWB interference signal does not follow a Gaussian

distribution [7]. A review of the probability density functions to be

considered for modeling MUI can be found in [7]. In [8] and [9]

the authors obtain the characteristic function (CF) of the interfer-

ence in order to derive exact BERs. In [9], the authors also give

expressions for the BER performance in MP channels. In the current

paper we use both exact CF based BER expressions and Gaussian

approximations (GA) to obtain the ZZLB. We also investigated how

the single-user maximum likelihood (ML) TOA estimator performs

with respect to the bounds.

The paper is organized as follows. In Sec. 2 we describe the

system model. In Sec. 3 we review the ZZLB. In Sec. 4 we de-

rive the BERs for the system model described in Sec. 2 and derive

the associate ZZLBs. In Sec. 5 numerical results are reported and

discussed. Finally, Sec. 6 concludes the paper.

2. THE SYSTEM MODEL

The TH-PPM signal transmitted by user n is defined as in [6] and

given by

sn(t) =
∞
∑

i=−∞

√

Eb

Nc

bn (t− iTp) (1)

where bn(t) is the template signal or signature enabling to identify

user n, Tp is the length of the period, and Eb is the energy of sn(t)
for a duration Tp. The signature bn(t) contains Nc pulses inside the

period Tp and can be written as

bn(t) =

Nc−1
∑

j=0

p(t− jTf − cn(j)Tc) (2)

where p(t) is the transmitted pulse, normalized to be unit energy

that is
∫

∞

−∞
p2(t) = 1, Tf is the frame duration or pulse repeti-

tion period, cn is the time hopping code (THC) of user n (cn(j) ∈
{0, Nh − 1}), Tc is the chip duration, and Nc the code length (Tp =
NcTf ). Nh represents the number of possible pulse positions per

frame (Tf = NhTc). Note that no data transmission has been con-

sidered since we are only interested by the estimation.
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The signal received over an SP AWGN communication channel

when Nu users are active can be expressed as

r(t) = A1s1 (t− τ ) +

Nu
∑

n=2

Ansn (t− τn) + n(t) (3)

where s1(t) is the signal from the user of interest, A1 its amplitude,

and τ its time delay and also the target parameter for the TOA es-

timation. {An}Nu
n=2

and {τn}Nu
n=2

represent the gain and time delay

of the interfering users. Signal n(t) is AWGN with double-sided

spectral density N0/2. The delays τ and {τn}Nu
n=2

are assumed to

be uniformly distributed over one period [0, Tp].
For the pulse p(t), we consider the normalized second derivative

of a Gaussian (doublet)

p(t) =
1

√

3Tm/8

[

1− 4π

(

t

Tm

)2
]

e
−2π

(

t
Tm

)

2

: (4)

where Tm is a variable that affects the width of the pulse. The auto-

correlation of the normalized doublet is

Rp(x) =

[

1− 4π

(

x

Tm

)2

+
4π2

3

(

x

Tm

)4
]

e
−π

(

x
Tm

)

2

. (5)

3. ZIV ZAKAI LOWER BOUND

In this section we present a short review of the ZZLB. The full

derivation of the bound can be found in [10, 11]. We are interested in

a lower bound for the mean square estimation error of the time delay

E{ǫ2} = E{(τ̂ − τ )2}, where E{·} denotes the expected value.

The ZZLB can be obtained from the identity

E{ǫ2} =
1

2

∫

∞

0

Pr

(

|ǫ| ≥ h

2

)

hdh (6)

and lower bounding Pr
(

|ǫ| ≥ h
2

)

.
Now consider a suboptimal decision scheme where the param-

eter is first estimated and a nearest-neighbor decision is made after-

wards

H0 : τ = a if τ̂ ≤ a+
h

2

H1 : τ = a+ h if τ̂ > a+
h

2
. (7)

The probability of error for this suboptimum detector can be

lower bounded by the minimum error probability Pe(a, a+h) given

by the likelihood ratio test . Pr
(

|ǫ| ≥ h
2

)

can be shown [11] to be

greater or equal to
∫

∞

−∞

(pτ (a) + pτ (a+ h))Pe(a, a+ h)da (8)

where pτ (τ ) is the pdf of the TOA. Given that pτ (τ ) follows a

uniform distribution in the interval [0, Tp], the lower bound on the

estimation error can then be expressed as

E{ǫ2} ≥ ZZLB =
1

Tp

∫ Tp

0

h

∫ Tp−h

0

Pe(a, a+ h)dadh. (9)

Moreover, when Pe(a, a+ h) is independent of a we can write

Pe(h) instead. Assuming this, the ZZLB is given by

ZZLB =
1

Tp

∫ Tp

0

h(Tp − h)Pe(h)dh. (10)

4. BIT ERROR PROBABILITY AND ZZLB

In the detection scenario associated with the ZZLB , the receiver is

required to decide between s1(t− τ ) or s1(t− τ −h). Without loss

of generality we assume τ = 0. Therefore, the receiver template for

user 1 is m1(t) = b1(t) − b1(t − h). The decision variable at the

correlator output is

r =

∫

∞

−∞

r(t)m1(t)dt = S + I + n (11)

where S is the signal component, I is the interference component

and n is the noise component. The receiver template m1(t) consists

of Nc waveforms v(t) = p(t)− p(t− h). The correlation of pulse

p(t) with waveform v(t) is defined as

Rpv(x) =

∫

∞

−∞

p(t− x)v(t)dt = Rp(x)−Rp(x− h) (12)

where Rp(x) is the auto-correlation of the waveform p(t). The auto-

correlation at the origin is equal to Rpv(0) = 1 − Rp(h) since

Rp(0) = 1 and Rp(x) = Rp(−x).
The probability of error for an optimum receiver can be obtained

from

Pe(h) = Pr(r < 0|s1(t)) = Pr(S + I + n < 0|s1(t)). (13)

4.1. Gaussian Approximation

The probability Pe(h) can easily be computed when we use the

Gaussian approximation for the interference component, meaning

that I is assumed to be a zero-mean Gaussian random process with

variance σ2

I . The noise component n has a variance σ2

n. The proba-

bility of error is then equal to

Pe(h) ≃ PGA
e (h) = Q(

√
SINR) (14)

where Q(x) = (1/
√
2π)

∫

∞

x
exp(−t2/2))dt is the Q-function, ex-

pressed in terms of the complementary error function as Q(x) =

(1/2)erfc(x/
√
2). SINR is the signal to interference plus noise ra-

tio and can be written as

SINR =
S2

σ2
n + σ2

I

=
(

SNR
−1 + SIR

−1
)

−1

(15)

where SNR and SIR are the signal to noise and signal to MUI ratios,

respectively. The useful signal energy S2 is given by

S2 =

(

∫

∞

−∞

A1

√

Eb

Nc

b1(t)m1(t)dt

)2

= A2

1

Eb

Nc

N2

c

(∫

∞

−∞

p(t)v(t)

)2

= A2

1EbNc(1−Rp(h))
2. (16)

The noise signal is equal to

n =

∫

∞

−∞

n(t)m1(t)dt (17)

and its variance σ2

n is equal to

σ2

n = E{n2} = N0Nc(1−Rp(h)). (18)
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The multiuser interference term is

I =

Nu
∑

n=2

In =

Nu
∑

n=2

An

∫

∞

−∞

sn (t− τn)m1(t)dt. (19)

In [9], the authors model the interference as being proportional

to the number of collisions k multiplied by the cross-correlation

Rpv(α) of one pulse with the template signal. Depending on the

similarity between the THCs cn and c1, and the time delay τn the

interference can be large, low or inexistent. The interference from

user n can therefore be expressed as

In = kAn

√

Eb

Nc

Rpv(α) (20)

where k ≤ Nc accounts for the number of collisions between codes

cn and c1, and α is a uniformly distributed variable over [−Tc

2
, Tc

2
].

The collisions k follow a binomial distribution:

Pr(k) = CNc

k (1/Nh)
k(1− 1/Nh)

Nc−k

= Pr

(

In = kAn

√

Eb

Nc

Rpb(α)

)

. (21)

The variance of the multiuser interference is then obtained by

σ2

I = E{I2} =
∑Nu

n=2
E{I2n}, given that interferences In from

different users are independent and identically distributed random

variables (i.i.d.) and zero mean. The expectation is taken here over

k and α. After averaging one gets

E{I2n} = A2

n

Eb

Nc

Nc
∑

k=0

k2
Pr(k)

1

Tc

∫
Tc
2

−
Tc
2

Rpv(α)
2dα

= A2

n

Eb

Nc

Nc

Nh

(

1 +
Nc − 1

Nh

)

1

Tc

σ2

R (22)

where σ2

R =
∫

Tc
2

−
Tc
2

Rpv(α)
2dα depends on h since Rpv(α) =

Rp(α) − Rp(α − h). As we can see, all components depend on

the time shift parameter h. Finally, the SNR can be expressed as

SNR =
S2

σ2
n

=
A2

1Eb(1−Rp(h))

N0

= γ(1−Rp(h)) (23)

where γ = A2

1Eb/No. The SIR is obtained as

SIR =
S2

σ2

I

=
NcTf (1−Rp(h))

2

(

1 + Nc−1

Nh

)

σ2

R

∑Nu

k=2

A2

k

A2

1

. (24)

With the SINR term defined in (15) , the expression of GA based

ZZLB is readily obtained from (10) using PGA
e (h) defined in (14)

instead of Pe(h)

ZZLB
GA =

1

Tp

∫ Tp

0

h(Tp − h)PGA
e (h)dh. (25)

4.2. CF Method

In this subsection we remind the reader of the exact BER expression

obtained in [9] using hte CF of the interference. We denote the ber

as PCF
e (h) = Pe(h). Note that now we are computing the exact

probability of error. The computation of Pr(S + I + n < 0|s1(t))
can be computed as a function of the CF as follows

PCF
e (h) =

1

2
− 1

π

∫

∞

0

sin(Sw)

w
Φn(w)ΦI(w)dw (26)

where Φn(w) and ΦI(w) are the CFs of the noise and the interfer-

ence, respectively. The CF of the noise is Φn(w) = exp
(

−σ2

nw2

2

)

.

With the change of variable wo = wA1

√

Eb

Nc
, the error probability

becomes

PCF
e (h) =

1

2
− 1

π

∫

∞

0

sin(Nc(1−Rp(h))wo)

wo

× exp

(

−N2

c (1−Rp(h))w
2

o

2γ

)

ΦI(wo)dwo (27)

where ΦI(wo) is the CF of the normalized interference I =

I/(A1

√

Eb/Nc). Since the interfering terms of the different users

n are i.i.d., the CF of I can be computed as follows

ΦI(wo) =

Nu
∏

n=2

ΦIn (wo) (28)

where ΦIn(wo) is the CF of the normalized interference from user

n, In. The CF is defined as

ΦIn(wo) = E
{

exp
(

jwo

(

In
))}

(29)

where In = kAnRpv(α)/A1 and the expectation is taken over k
and α. Thanks to the symmetry properties of p(t), the CF of In can

be further expressed as

ΦIn(wo) =

∫ Tc
2

−
Tc
2

Nc
∑

k=0

Pr(k)

Tc

cos

(

wok
An

A1

Rpv(α)

)

dα. (30)

Finally, the CF based ZZLB is obtained by inserting in (10) the

expression of PCF
e (h) given in (27).

ZZLB
CF =

1

Tp

∫ Tp

0

h(Tp − h)PCF
e (h)dh. (31)

5. RESULTS AND DISCUSSION

In this section we present numerical and simulation results. For all

results we use the Gaussian monocycle described in (4). The TH-

PPM parameters used are listed in Table 1. The cn(i) are integer

values uniformly distributed between [0, Nh − 1]. Perfect power

control is always implemented, meaning that all An are equal. All

results are root mean square errors (RMSE) reported as a function of

γ = A2

1Eb/No.

In order to compare the ZZLBs with the performance of a prac-

tical estimator, simulations have also been conducted for the single-

user maximum likelihood estimator (MLE), provided hereafter:

τ̂ = argmax
τ

∫

∞

−∞

r(t)b1(t− τ )dt. (32)

Figure 1 reports the RMSE values achieved with the two bounds

and with the single-user MLE. Figure 2 shows the same results but

with a zoom on the high SNRv zone only. From Figure 1 it appears

that the three different SNR regions [12] can easily be identified. The

high SNR region corresponds to situations where the estimates are

close to the main peak of the auto-correlation function, and therefore

close to correct values. In the region of intermediate SNRs, the es-

timates are impacted by the secondary lobes of the auto-correlation

function and also by the cross-correlation with the codes of the other

users. This creates the so-called ambiguity effect, meaning that the
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Table 1. Parameters of TH-PPM System

Parameter Notation Value

Pulse Width Modifier Tm 1 ns

Chip Width Tc 2.5 ns

Frame Width Tf 37.5 ns

Code Length Nc 15

Number of Chips per Frame Nh 15

Number of Users Nu 1, 2, 4, 8
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Fig. 1. RMSE with respect to γ. Nu = 1, 4, 8.

estimates can be associated with a peak which is not the main or the

correct one. In the low SNR zone, the estimates are spread all over

the observation interval.

From the two figures it appears that the GA based ZZLB turns

out to be more optimistic than the CF based ZZLB. As reported in

[11], the GA tends to underestimate the value of the error probability,

which leads to a looser bound.

From the two figures it can also be noticed that the MLE per-

forms close to the bounds at high SNR. This behaviour has been

noticed in [8]. It can be concluded that the bounds nicely predict the

performance of the MLE at high SNR.

6. CONCLUSIONS AND FUTURE WORK

This paper has investigated the ZZLBs for the TOA estimation in

SP AWGN channels and in the presence of MUI. TH-PPM UWB

signals have been considered. The ZZLB has been obtained by us-

ing the known method which consists in converting the related esti-

mation problem into a equivalent binary detection one. BERs have

been obtained both by handling correctly the MUI and by modeling

the MUI by means of the Gaussian approximation. The bounds have

been illustrated by numerical results and compared with the perfor-

mance of the single-user MLE.

In the future MP channels will also be considered.
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