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ABSTRACT

Recently, we presented a low-complexity vector state-scalar ob-
servation (VSSO) Kalman channel estimator for doubly-selective
OFDM systems in [1]. In [1], we derived the decoupling equations,
where a received pilot symbol vector is decoupled into L scalars,
L being the number of multipaths of the channel. This decoupling
concept formed the basis of the VSSO Kalman channel estimator.
However, in [1], we considered only one observed subcarrier from
each pilot cluster. In this paper, we consider more than one observed
pilot subcarriers from each pilot cluster and work out a more gener-
alized form of the decoupling equation. This paves way to a more
generalized form of the VSSO Kalman estimator. The performance
and complexity results are shown compared to an existing vector
state-vector observation Kalman estimator. It will be seen that our
proposed VSSO method achieves the same performance as the exist-
ing vector state-vector observation (VSVO) method [2] and results
in more than 90% complexity savings. Results are also presented
for a practical system like a digital video broadcasting (DVB-H)
system.

Index Terms— Basis expansion model (BEM), Doubly selec-
tive, ICI, Kalman, OFDM, VSSO

1. INTRODUCTION

A VSVO Kalman channel estimator for doubly-selective orthog-
onal frequency-division multiplexing (DS-OFDM) systems was
presented in [2]. Motivated by this Kalman-approach, the first au-
thor of this paper presented a vector state-scalar observation (VSSO)
Kalman channel estimator for DS-OFDM systems in [1]. The VSSO
estimator attained the same performance as the VSVO estimator and
resulted in savings of over 90% in complexity. The first author also
shows the equivalence of the VSSO and VSVO estimators from
a theoretical viewpoint in [3] and in [4] a VSSO estimator was
presented for DS multiple-input multiple-output (MIMO) OFDM
system . In this paper, we present a more generalized version of
the VSSO channel estimator as compared to the one in [1]. In other
words, the algorithm in [1] is just a special case of the one presented
here in this paper. The key contributions in this paper compared to
[1] can be summarized as follows:

(i) A DS-OFDM system consists of data, pilot and observation
clusters, which are interleaved with one another as shown in Fig. 1.
The part of the pilot cluster used for channel estimation is called as
an observation cluster. The work in [1] assumed an observation clus-
ter of length unity, whereas this paper assumes observation clusters
of length greater than unity.

(ii) The system model in this paper is more accurate than the
one in [1] where it was assumed that a pilot subcarrier in a particular
pilot cluster is only influenced by other pilot subcarriers belonging

to the same pilot cluster. In this paper, however, we assume all pilot
clusters can influence any pilot subcarrier in any pilot cluster. This is
particularly important if the concerned pilot subcarrier experiences
a deep-fade.

(iii) New results pertaining to complexity are presented in this
paper. Additionally, we present results for a practical digital video
broadcasting (DVB-H) system.

Further papers in this domain are [5], [6] and [7]. The work
in [5] describes a method of turbo equalization for doubly-selective
fading channels using nonlinear Kalman filtering and basis expan-
sion models. Cui describes a low-complexity pilot-aided channel
estimation method for OFDM systems over doubly-selective chan-
nels in [6] while Multi-input multi-output fading channel tracking
and equalization using Kalman estimation is discussed in [7].

Notation: We will use A(:,m :n)(A(m :n, :)) to extract the
submatrix from column (row) m to column (row) n, A(r, c) to ex-
tract a submatrix within A defined by the index-vector of desired
rows in r, and the index-vector of desired columns in c. The vector
x(m :n) extracts entries from m to n and x(r) extracts entries de-
noted by the index-vector r. The (p, q)th and pth elements of A and
x are denoted by A(p, q) and x(p), respectively. The notation x(k)

means that x is associated with the kth OFDM symbol.

2. SYSTEM MODEL

2.1. OFDM System Model

Consider an OFDM system with N subcarriers. Without loss of
generality, we consider the zeroth OFDM symbol. As such, the su-
perscript (0) is omitted when referring to the zeroth OFDM sym-
bol. The N×1 OFDM symbol vector at the transmitter consists
of data and pilot symbols. The lth channel tap at the nth time in-
stant is denoted by h̃l(n). The quantity h̃l(n) has a finite order, i.e.,
h̃l(n)=0, for l >L−1. The length of the cyclic prefix (CP) is L

...
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Fig. 1. Pilot, data and observation clusters.
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samples. The samples at the receiver, r̃(n), are corrupted by addi-
tive white Gaussian noise (AWGN), w̃(n). After discarding the CP,
the N×1 received vector can be written as r̃ = 1√

N
H̃FHx + ñ

where ñ is the AWGN vector, H̃(p, q) = h̃〈p−q〉(L+p) is the time-
domain channel matrix and the N×N FFT matrix F is defined as
F(m,n)= e−

j2πmn
N . A fast Fourier transform (FFT) operation is

applied to the received signal to yield

y = 1√
N

Fr̃ =
1

N
FH̃F

H

| {z }

H

x +
1√
N

Fñ

| {z }

n

(1)

a vector of demodulated output symbols.

2.2. BEM Channel Model

Basis expansion models (BEMs) [1] are often used to approximate a
time-varying channel. Consider the N samples of the lth tap within
the zeroth OFDM symbol duration (after the CP is discarded), i.e.,
h̃l(L + n), n = 0, . . . , N − 1. Because of the time-varying na-
ture, the channel h̃l(L+n) changes within the OFDM symbol dura-
tion. The N samples of the channel are accurately approximated by
Q basis functions bq(n), q = 0, . . . , Q − 1, n = 0, . . . , N − 1

as h̃l (n) ≈
Q−1
P

q=0

hl (q) bq (n) ,. Denote the lth-path channel vec-

tor as h̃l = [h̃l (L) , . . . , h̃l (L+N − 1)]T . Furthermore let hl =
[hl(0), . . . , hl(Q−1)]T denote a vector of BEM coefficients and B

be an N×Q BEM matrix such that B(n, i) = bi(n). The BEM
approximation can be written as

h̃l ≈ Bhl· (2)

2.3. Pilot and Data Clusters

The lengths of data and pilot clusters are LD = 2wD +1 and LP =
2wP + 1, respectively. The quantities Pb and Psep denote the index
of the middle subcarrier of the first pilot cluster and the distance
between the middle subcarriers of two neighboring pilot clusters,
respectively. The number of pilot and data clusters are denoted by
NP and ND , respectively. We denote the pilot and data vectors by
the N×1 vectors p and d, respectively. The quantity p(i) denotes
the pilot symbol mapped to the ith subcarrier and is equal to 0 if
the ith subcarrier is a data subcarrier. Likewise, d(i) denotes the
data symbol mapped to the ith subcarrier and is equal to 0 if the ith
subcarrier is a pilot subcarrier. Note that x = p + d. Equation (1)
can be rewritten as

y =
1

N
FH̃F

H
p +

1

N
FH̃F

H
d +

1√
N

Fñ· (3)

Let p1 be aNPLP×1 pilot-index vector whose entries comprise the
indices of all pilot subcarriers in ascending order,

p1 = [〈Pb − wP 〉 , . . . ,Pb,

. . . , 〈Pb + wP 〉 ,. . . , 〈Pb+(NP−1)Psep+wP 〉]T (4)

where, 〈x〉 = xmodN . The length of the observation cluster (OC)
is O = 2Bc +1 and is protected on either side by a guard band of
length G. In all, V =NPO pilot subcarriers are used for channel
estimation. The relevant pilot subcarriers are accessed via (2Bc+1)

pilot-index vectors p
(i)
2 , i = −Bc,. . ., Bc, (Superscript (i) denotes

that the quantity is associated with the where p
(i)
2 is the ith pilot-

index vector. Its entries comprise the indices of the ith neighbor of
the middle subcarrier in each pilot cluster and is defined as

p
(i)
2 = [〈Pb+i〉 , 〈Pb+i+Psep〉, . . . ,〈Pb+i+(NP−1)Psep〉]T,

|i| ≤ Bc·
(5)

Concatenating all p
(i)
2 into a master pilot-index vector p2 =

h

p
(−Bc)T
2 , . . . ,p

(Bc)T
2

iT

, the observed pilot symbol vector used

for channel estimation is the V×1 vector ȳ = y(p2)· Let the pilot
cluster be denoted by an LP×1 vector pc. Concatenating all the pi-
lot clusters together, the master pilot pattern vector could be written
as the NPLP×1 vector ppat = p(p1) =

ˆ

pT
c , . . . ,p

T
c

˜T ·

2.4. BEM-Based OFDM System Model

Ignoring the interference from data clusters and noise, it follows
from (3) that the mth demodulated pilot subcarrier is

y(p1 (m)) = 1
N

N−1
P

n=0

e−j2πp1(m)∆fn
L−1
P

l=0

h̃l (L+ n)

×
NP LP −1

P

u=1

p (p1 (u))ej2πp1(u)∆f(n−l)

(6)

where ∆f=1/N . Rearranging the various summations and noting
from (2) that h̃l (L+ n) =

PQ−1
q=0 B (n, q)hl(q), the above equa-

tion can be rewritten as

y(p1 (m)) = 1
N

L−1
P

l=0

e−j2πp1(m)∆fl
NPLP−1

P

u=1

e−j2π(p1(u)−p1(m))∆fl

p (p1 (u))
N−1
P

n=0

Q−1
P

q=0

B (n, q)hl(q)e
j2π(p1(u)−p1(m))∆fn·

(7)
We are now in a position to present the expression for y(p

(i)
2 ). To

do so, we define the following matrices

F
(i)
L = F

“

p
(i)
2 , 0 : L− 1

”

u
(i)
l (m) = e−j2π(p1(m)−Pb−i)∆fl, m = 1, . . . , NPLP − 1

W(i) =

2

6

6

6

4

FH (〈N + (p1(0) − Pb − i)〉 , :)
FH (〈N + (p1(1) − Pb − i)〉 , :)

...
FH (〈N + (p1(NPLP − 1) − Pb − i)〉 , :)

3

7

7

7

5

F
(i)
U =

2

6

6

4

u
(i)
0

. . .

u
(i)
L−1

3

7

7

5

pL = IL ⊗D(ppat)
Z = IL ⊗B

h =
ˆ

hT
0 , . . . ,h

T
L−1

˜T

F
(i)
W = IL ⊗W(i)·

(8)
Evaluating (7) for p1(m)=Pb+i+jPsep, j = 0, . . . , NP −1, and
recalling the fact that interference from data clusters and noise is
neglected, we can write y(p

(i)
2 ) in matrix form as

y(p
(i)
2 ) = H

“

p
(i)
2 , :

”

p =
1

N
F

(i)
L F

(i)
U pLF

(i)
W Zh· (9)

Considering the interference due to data clusters and AWGN, it fol-
lows from (8) and (9) that

ȳ = Ph + n1 (10)
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where n1 is the interference due to data clusters and noise and

P =
1

N

2

6

6

4

F
(−Bc)
L F

(−Bc)
U pLF

(−Bc)
W Z

...
F

(Bc)
L F

(Bc)
U pLF

(Bc)
W Z

3

7

7

5

(11)

is the channel estimation matrix of dimension V×LQ. The purpose
of channel estimation is to estimate h from ȳ. Once an estimate of
h is obtained, we compute the various h̃l, l = 0, . . . L− 1, from (2)
and use H̃(p, q) = h̃〈p−q〉(L + p) and (1) to obtain an estimate of
the channel matrix H.

3. VSSO KALMAN CHANNEL ESTIMATOR

3.1. Decoupling Property

Let the lth column of F
(i)
L be denoted by fi,l, i.e., fi,l = F

(i)
L (:, l).

We can write
fH
i,lfi,l′ = 0, l 6= l′

fH
i,lfi,l′ = NP , l = l′· (12)

From the definitions in (8), it therefore follows that

f
H
i,lF

(i)
L F

(i)
U pLF

(i)
W Zh

(k) = NP u
(i)
l D(ppat)W

(i)
Bh

(k)
l , (13)

where the channel vectors h(k),h
(k)
l correspond to the kth OFDM

symbol. Concatenating the various vectors f−Bc,l, . . . , fBc,l, we

form dl =
ˆ

fH
−Bc,l, . . . , f

H
Bc,l

˜H
, which, as will be seen shortly,

is a de-correlating or decoupling vector. Recall that ȳ(k) is the ob-
served pilot symbol vector for the kth OFDM symbol. Premultiply-
ing it by dH

l and using (10), (11) and (13), we arrive at the following
multipath-scalar

ȳ
(k)
l = d

H
l ȳ

(k) = ψ
(k)
l + w̄

(k)
l (14)

where ψ(k)
l = NP

N

Bc
P

i=−Bc

u
(i)
l D(ppat)W

(i)Bh
(k)
l and w̄

(k)
l =

dH
l n

(k)
1 ·

3.2. VSSO Kalman Filter

The state vector for the lth path during the kth OFDM symbol is
defined by an MQ×1 vector

g
(k)
l = [h

(k−M+1)T
l , . . . ,h

(k)T
l ]T (15)

where M is the prediction order and typically depends on the coher-
ence time of the channel.We have

g
(k)
l = Ag

(k−1)
l + e

(k)
l (16)

where A is an auto-regressive (AR)-parameter matrix and e
(k)
l is the

prediction-error vector corresponding to the kth OFDM symbol.
We now rewrite (14) in terms of the state equation (16) as

ȳ
(k)
l = q

H
l g

(k)
l + w̄

(k)
l (17)

where qH
l = NP

N
[0T

(M−1)Q

P

i
u

(i)
l D(ppat)W

(i)B]· The vector

qH
l is a 1×MQ row vector and w̄(k)

l is the interference during the
kth OFDM symbol whose variance is given as E{|w̄(k)

l |2} = σ̄2
l .

Equation (17) relates the state vector g
(k)
l to the scalar observation

ȳ
(k)
l for the lth multipath. This corresponds to the scalar observation

matrix of the lth path VSSO Kalman filter.
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Fig. 2. Performance (KFLS) and complexity comparisons between
VSSO and VSVO Kalman filters for various lengths of the pi-
lot/observation cluster (LP /O).

1 2 3
1

1e1

1e2

1e3

1e4

1e5

1e6

1e7

C
om

pl
ex

ity
 (

C
O

s 
pe

r 
O

F
D

M
 s

ym
.)

 

 
C

VSSO

C
VSVO

O=1, V = 8
CS = 88.9%

O=3,V=24
CS=98.69%

O=5,V=40
CS = 99.6%

Fig. 3. Complexities CVSSO and CVSVO for the plots in (a). CS is
complexity savings, in percentage, of the VSSO estimator w.r.t the
VSVO estimator.

4. NUMERICAL RESULTS

We simulate a four-tap wide-sense stationary uncorrelated scattering
channel with an exponential multipath intensity profile. Each chan-
nel tap is a complex Gaussian random process independently gen-
erated using the Jakes’ Doppler spectrum. The OFDM system uses
the parameters N=128, L=4, Pb=0, Psep=16, Q=2,M=2, NP =
8, G=1 and fD=0.1. All symbols are drawn from a QPSK con-
stellation. The VSSO and VSVO Kalman filters always use the
same set of parameters. The complexity is evaluated using [8] while
keeping the structures of various matrices in mind. The lightspeed
Matlab toolbox [8] does not count floating point operations used
in matlab simulations. It is independent of the matlab models im-
plemented and gives the true complexity of the algorithm in terms
of number of complex operations (COs). For example, if A =
[1 + j 2 + j 3 − j; 1 + 2j 0 0; 0 1 − j 0] ,B = [1−j 1+
j 0]T ,C = [0 2+ j 3− j]T , it can be seen that the complexity in-
volved in computing AB+C is seven COs. The channel estimation
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Fig. 4. Comparison of VSSO and VSVO Kalman estimators for var-
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Fig. 5. SER comparison between VSSO Kalman filter and LMMSE
estimator for fD=0.0663, v = 100 km/hr in a DVB-H system.

error (CEE) is as per the definition in [1, (13)]. The Kalman filter
gives us two estimates, KF and KFLS, as was discussed in [1].

Let the complexities, in terms of number of COs per OFDM
symbol, of the VSSO and VSVO estimators be denoted by CVSSO

and CVSVO, respectively. Each complex addition and complex mul-
tiplication is counted as one complex operation. The complexity sav-
ings, in percentage, is defined as CS = 100×CVSSO/CVSVO. Fig-
ure 2 shows the performance (KFLS estimate) of VSSO and VSVO
Kalman filters for various lengths of the observed pilot symbol vec-
tor (V ). Both the estimators have similar performance. In Fig. 3, we
plot the complexities of the VSSO and VSVO Kalman filters in terms
of the number of COs per OFDM symbol. The decoupling property
of the VSSO Kalman filter ensures that its complexity is independent
of V . This can be seen from Fig. 3 where CVSSO is independent of
V and is always equal to 1048 COs per OFDM symbol. On the other
hand, the complexity of the VSVO Kalman filter increases exponen-
tially with an increase in V . This is because the dimension of the
observation matrix P in [2, (20)] increases with an increase in V .
It can also be seen that the VSSO Kalman filter achieves complexity

savings CS of 88.9%, 98.69% and 99.6% with respect to the VSVO
Kalman filter for V = 8, 24 and V = 40, respectively. Recall that
the abstract in [1] reported CS= 92%.

It can be concluded form Fig. 2 that the performance increases
when the observation cluster length is greater than unity (O > 1).
Recall that [1] considered only O = 1. It can also be concluded
from Fig. 3 that the complexity increase due to O > 1 is marginal
and does not increase as is the case with VSVO.

4.1. Simulation Results for a DVB-H System

We now present some results in the context of a DVB-H system. We
consider the 8k mode which corresponds to a bandwidth of 8MHz
andN = 6817 subcarriers [9]. However, for ease of simulations, we
only consider a portion of the available bandwidth. In particular we
consider N = 512 subcarriers within a bandwidth of 0.57 MHz. By
doing so, we ensure that the inter-carrier spacing and OFDM symbol
duration are preserved as in the 8k mode. This ensures that the ICI
effect is the same as in the case of N = 6817 subcarriers.

If the multipath delay spread is Lt sec. and the bandwidth isBc,
it was shown in [10], that the multipath can be completely charac-
terized by a tapped delay line with L = ⌊Lt/T ⌋ taps, where ⌊x⌋ is
the greatest integer lesser than or equal to x and T ≈ 1/Bc is the
chip (or sample) duration. The tap separation is 1/Bc sec. It was
shown in [11], that a Rayleigh fading channel with an exponentially
decaying power profile and a delay spread of 7 µs well approximated
the typically urban (TU6) channel model defined by the COST 207
project for global system for mobile communications (GSM) [12].
Recall that the OFDM symbol duration is NT = 896 µs [9]. The
sample duration is T = 1.75 µs and L = 4.

The OFDM system uses the parameters N=512, L=4, Pb=
0, Psep=32,M=2, NP =16 and G=1. A value of O = 1 is used
for VSSO and VSVO Kalman estimators while O = 3 is used by
the linear minimum-mean square error (LMMSE) estimator [13].
All symbols are drawn from a QPSK constellation. The VSSO and
VSVO Kalman filters always use the same set of parameters.

Figure 4 depicts the CEE of the VSSO and VSVO filters for vari-
ous fD (Doppler spread normalized to the OFDM symbol duration).
For fD = 0.0663 the variation of the channel within an OFDM
symbol duration is mostly linear in nature and Q = 2 is therefore
chosen when fD = 0.0663. For higher values of fD = 0.1326
and fD = 0.1989, we need to select higher values of Q = 3 as the
channel variation was found to be quadratic in nature. Furthermore,
the CEE increases with increase in fD. In Fig. 5 we plot the sym-
bol eror rate (SER) performance of VSSO and LMMSE estimators
in a DVB-H system for a speed of v = 100 km/hr. Clearly the pro-
posed VSSO Kalman algorithm outperforms the LMMSE estimator
of [13].

5. CONCLUSIONS

In this paper, we presented a generalized form of the VSSO Kalman
channel estimator. The generalization consists of relaxing the as-
sumptions on the observation window length for Kalman estimation
as well as a more rigorous interference modeling. We show that with
the proposed generalization, we can achieve better channel estima-
tion accuracy at a negligible increase in computational complexity.
We also presented results for a practical DVB-H system.
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