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Abstract—In this paper, an iterative blind estimator for frac-
tional carrier frequency offset (CFO) in orthogonal frequency
division multiplexing (OFDM) systems is proposed. The estimator
utilizes the null subcarriers transmitted at the edge of the
spectrum and does not require any training. In addition, the
proposed estimator does not require any prior knowledge of the
frequency response of the channel. The problem is formulated
using a state-space model, and an extended Kalman filter (EKF)
is employed to estimate the CFO iteratively. Simulation results
illustrate the enhanced ability of the proposed algorithm, relative
to the existing approaches, to estimate and track the CFO even
in the presence of high Doppler.

Index Terms—Orthogonal frequency division multiplexing,
carrier frequency offset, Kalman filter.

I. INTRODUCTION

O rthogonal frequency division multiplexing (OFDM) is
famous for its robustness against the frequency selec-

tivity of wireless channels. Despite its promises, OFDM is
vulnerable to synchronization errors. The presence of carrier
frequency offset (CFO) between communicating nodes causes
loss in orthogonality among subcarriers. This results in intro-
ducing inter-carrier interference (ICI) that severely degrades
the system performance [1]. Stimulated by the importance of
accurate CFO estimation and compensation, extensive work
has been done to solve this problem, e.g., [2]–[9].

Schemes for CFO estimation can be divided into two main
categories; data-aided and non data-aided (blind). Data-aided
schemes utilize the training symbols embedded in the structure
of OFDM symbols. A pilot-aided technique is proposed in
[2], where a maximum likelihood coarse estimate is used to
initialize a recursive least squares algorithm that estimates
and tracks the CFO. Preamble-based techniques are proposed
in [3], [4], [8]. Using the preamble, a maximum aposteriori
(MAP) estimate is derived in [3], which is then used to
compensate for the whole frame, where the CFO is assumed
constant. This work is further extended in [4], where this MAP
estimate is used to initialize a Kalman filter that iteratively
refines and tracks the CFO estimate. In [8], a joint time-
domain channel and CFO estimation and tracking algorithm
is proposed. A preamble is used to obtain initial estimates
of the channel and the CFO. These estimates are refined
iteratively via an extended Kalman filter (EKF) implemented
in a decision-directed algorithm.

Non data-aided schemes rely mainly on exploiting the
intrinsic properties of the OFDM signal structure. Conven-
tional CFO estimators that exploit the redundancy of the
cyclic prefix (CP) present in OFDM systems depend on the
availability of excess CP [5], i.e, a CP beyond the length of the
fading channel. In contrast, Liu and Tureli proposed a blind
CFO estimation algorithm that utilizes the null subcarriers
in [6]. The estimation problem is formulated and solved via
the subspace-based MUltiple SIgnal Classification (MUSIC)
algorithm [10]. Another subspace-based algorithm, ESPRIT
[11], was also used in [7] to solve this problem.

In this paper, we propose a low-complexity iterative algo-
rithm for CFO estimation and tracking in doubly selective
channels. An EKF is used to minimize the mean square error
(MSE) between the received signal on the null subcarriers
caused by the ICI due to CFO, and the ideally received nulls.
The algorithm does not require any prior knowledge of the
CFO, i.e., it does not need preamble transmission or training.
Moreover, channel state information (CSI) is not required since
the channel effect is masked by the transmitted nulls. The
robustness of the algorithm to the temporal selectivity of the
channel is illustrated in the simulations section.

The main difference between the proposed algorithm and
[6] is the iterative implementation of the proposed algorithm.
That is, the CFO is estimated on an OFDM symbol-by-symbol
basis, while [6] requires a large record of received OFDM
symbols. We use the performance of the batch estimator in [6]
as a benchmark reference for the performance of the proposed
estimator in the simulations section. Compared with [8], the
proposed algorithm exhibits low computational complexity per
iteration (O(L3) real multiplications), where L denotes the
number of utilized null subcarriers (typically L = 3). On the
other hand, the algorithm in [8] has high computational com-
plexity (O(N3) complex multiplications), where N denotes
the discrete Fourier transform (DFT) size (typically N = 64).
In addition, the proposed algorithm is independent of CSI,
while in [8], CSI is required for equalization in every iteration
as it is a decision-directed algorithm. The equalization required
by [8] elicits another problem, which is the vulnerability to
high order constellations, unlike the proposed algorithm which
is independent of the constellation order.
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II. SYSTEM MODEL

In this section, we present a matrix-vector model for a
discrete-time baseband-equivalent OFDM system that takes
into account the CFO effect. The received time-domain signal
due to the mth OFDM symbol is written following [12] as

y(m) = ej2πε(m−1)(1+Ng/N)EWPH(m)s(m) + n(m) (1)

where the P × 1 vector s(m) contains the frequency domain
symbols transmitted on the active subcarriers in the mth
OFDM symbol. Each OFDM symbol is composed of two
different types of subcarriers. The first type is the active
subcarriers (data or pilot subcarriers). The second type is null
subcarriers that represent the guard band inserted at both edges
of the spectrum. The number of active subcarriers is P while
the remaining L = N − P subcarriers are nulls. In (1), the
P × P matrix H(m) contains the frequency response of the
channel at the indices of the active subcarriers on its main
diagonal elements, and the ICI terms due to the Doppler shift
on its off-diagonal elements. Let A = {a1, a2, . . . , aP } denote
the set of active subcarriers indices, while L = {l1, l2, . . . , lL}
is the set of null subcarriers indices. The matrix Wp is
obtained from the N × N inverse discrete Fourier transform
matrix WN . Thus, WP = [wa1 ,wa2 , . . . ,waP ] where wi is
the ith column of WN . The time domain received samples
are modulated by E = diag{1, ej 2π

N ε, . . . , ej
2π
N (N−1)ε}, where

ε denotes the normalized CFO, i.e., ε = NTsδf , Ts is the
sampling time of the system and δf is the CFO in Hertz.
The duration of the OFDM symbol is denoted by T , where
T = NTs. In addition, Ng denotes the length of CP augmented
to the transmitted time domain samples to avoid inter-symbol
interference (ISI) between consecutive OFDM symbols, and
n(m) is the time domain additive white Gaussian noise added
to the mth received OFDM symbol.

In order to illustrate the effect of CFO, let us consider a
perfectly synchronized noiseless system, i.e., ε = 0. In this
case, the mth received symbol is given by

y(m) = WPH(m)s(m) (2)

Thus, applying DFT demodulation to y(m), we get

WH
P y(m) = H(m)s(m) (3)

where the superscript H denotes hermitian transpose. In con-
trast, in the presence of CFO, i.e., ε 6= 0, the receiver input is
modulated by E, and hence,

WH
P y(m)=WH

P EWPH(m)s(m)ej2πε(m−1)(1+
Ng
N ) (4)

Since WH
P EWP 6= IP , where IP denotes the P ×P identity

matrix, the matrix E destroys the orthogonality among the
subcarriers and introduces ICI. In order to alleviate this ICI,
the CFO should be compensated in the time domain before
applying the DFT.

Conventional CFO estimation can be performed using the
CP by correlating N -spaced samples of the received time-
domain vector. Due to the effect of ISI, the first Lch symbols
of the CP are discarded where Lch denotes the channel length.

The parameter ε can then be estimated as

ε̂(m) =
1

2π
∠

 1

Ng − Lch

Ng−Lch−1∑
i=0

rN+i(m)r∗i (m)

 (5)

where ∗ denotes the complex conjugate, ∠ denotes the angle
of a complex variable, and ri(m) is the ith sample of the
received time-domain signal (including the CP) corresponding
to the mth OFDM symbol after removing ISI.

III. PROPOSED ALGORITHM

In the absence of CFO and noise, the demodulated signal
(after applying the DFT) on null subcarrier li of the mth
OFDM symbol is given by

wH
li y(m) = wH

li WPH(m)s(m) = 0 (6)

However, this is not true in the presence of CFO due to the
resulting ICI, where the signal from the neighboring non-
zero subcarriers leaks to the null subcarriers. Let the N ×N
diagonal matrix Φ be defined as [6]

Φ = diag
{
1, ej

2π
N φ, . . . , ej

2π
N (N−1)φ

}
(7)

where φ is the value used to compensate for the effect of CFO.
The matrix Φ contains the progressive phase shift caused by
the estimated CFO parameter φ on its main diagonal. CFO
compensation is performed by multiplying the received time-
domain OFDM symbol (after cyclic prefix removal) by the
inverse of Φ. Hence, it is obvious that if φ = ε, the received
signal on null subcarrier li after CFO compensation becomes

wH
li Φ−1y(m) = 0. (8)

As a measure of the compensation error, we define the MSE in
CFO compensation as the power leaking into null subcarriers

MSE =
L∑
i=1

E
{
| 0−wH

li Φ−1y(m) |2
}

(9)

where E denotes the statistical expectation that is taken over
the random variables contained in the vector y(m). Hence,
the parameter φ can be estimated by minimizing the power
contained in the received signal on each of the null subcarriers.
Since the Kalman filter is an MMSE estimator/tracker, this
definition of the MSE motivates the use of a Kalman filter to
minimize the MSE in (9).

In order to use the Kalman filter, we need a dynamic state
model for the CFO. Since it originates from the difference
between local oscillators used at both communication ends,
and this difference can vary slowly, e.g., due to temperature
variations, we model the temporal evolution of the parameter
φ from the (m− 1)th OFDM symbol to the mth one as

φ(m) = φ(m− 1) + u(m) (10)

where u(m) is a Gaussian zero-mean process with variance
σ2
u. Note that the process noise u(m) allows the Kalman filter

to track possible drifts in the CFO.
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Fig. 1: RMSE of CFO estimate at Eb/N0 = 20dB and
fdT = 0.025 for different values of L.

Since the Kalman filter minimizes the uncertainty due to the
process and measurement noises, we can minimize the MSE
in (9) by defining the measurement equation as

z(m) = f(φ(m)) + ν(m) (11)

where z(m) = 02L which denotes a vector of 2L zeros, ν(m)
is a zero-mean Gaussian noise with covariance matrix σ2

νI2L,
and the 2L× 1 vector f(φ(m)) is given by

f(φ(m)) = [f1(φ(m))T f2(φ(m))T . . . fL(φ(m))T ]T (12)

where superscript T denotes transpose. The first and second
components of the 2 × 1 vector fi(φ(m)) are, respectively,
the real and the imaginary parts of the received signal on null
subcarrier li (after CFO compensation), i.e., the real and the
imaginary parts of wH

li
Φ−1y(m). Thus, substituting by the

elements of wli and Φ(φ(m)), we can write

fi1(φ(m))=
1√
N

N−1∑
k=0

<
(
yk(m)e−j

2π
N lik

)
cos

(
2π

N
φ(m)k

)
+ =

(
yk(m)e−j

2π
N lik

)
sin

(
2π

N
φ(m)k

)
(13)

fi2(φ(m))=
1√
N

N−1∑
k=0

=
(
yk(m)e−j

2π
N lik

)
cos

(
2π

N
φ(m)k

)
−<

(
yk(m)e−j

2π
N lik

)
sin

(
2π

N
φ(m)k

)
(14)

where < and = denote the real and imaginary parts respec-
tively. We can see from (13) and (14) that the measurement
equation is nonlinear in the state variable. An approximate
solution can be derived through linearization of f(φ(m)) and
subsequent application of the linear Kalman filter. This results
in the EKF which we use to adaptively track the CFO.

Let φ̂(m|m−1) denote the one-step predicted state estimate
at time m given knowledge of the process prior to step m.
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Fig. 2: RMSE of CFO estimate versus normalized Doppler at
Eb/N0 = 20dB

Also, let φ̂(m|m) denote the posterior state estimate at time
m given the measurement z(m). In addition, let P (m|m− 1)
and P (m|m) denote, respectively, the prior and posterior MSE
associated with the corresponding estimates. Proceeding with
the EKF derivation, we linearize f(φ(m)) around φ̂(m|m−1)

f(φ(m)) ≈ f(φ̂(m|m− 1)) +
∂f

∂φ(m)

∣∣∣∣
φ(m)=φ̂(m|m−1)

(15)

Let

F(m)=
∂f

∂φ(m)

∣∣∣∣
φ(m)=φ̂(m|m−1)

(16)

Then, the EKF equations are as follows [13]:
Time update equations (TUE):

φ̂(m|m− 1) = φ̂(m− 1|m− 1) (17)

P (m|m− 1) = P (m− 1|m− 1) + σ2
u (18)

Measurement update equations (MUE):

φ̂(m|m)= φ̂(m|m− 1)+K(m)
(
02L−f(φ̂(m|m−1))

)
(19)

P (m|m)=[1−K(m)F(m)]P (m|m− 1) (20)

where the innovation covariance matrix S(m) and the filter
gain K(m) are given respectively by

K(m) = P (m|m− 1)F(m)TS(m)−1 (21)
S(m) = σ2

νI2L + F(m)P (m|m− 1)F(m)T (22)

IV. SIMULATION RESULTS

In this section, the performance of the proposed algorithm
is evaluated in terms of the root mean square error (RMSE)
in the CFO estimate. We consider a SISO-OFDM system
employing 16-quadrature-amplitude-modulation (QAM) with
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Fig. 3: CFO estimate versus OFDM symbol index at
Eb/N0 = 20dB and fdT = 0.025

N = 64, Ng = N/4, Np = N/16, and 1/Ts = 20MHz.
The number of null subcarriers is 12. There are 6 consecutive
nulls at one spectrum edge, 5 at the other edge, and the
DC subcarrier. The transmitted frame consists of 120 OFDM
symbols. We consider a Rayleigh channel with 4 taps whose
power delay profile is given by (0,−1.5,−2.5,−3.6) dB. The
EKF parameters are selected as σ2

u = 10−8 and σ2
ν = 10−3.

Simulation results are averaged over 1000 Monte Carlo runs.
Fig. 1 shows the RMSE of the CFO estimate versus the

OFDM symbol index. In each transmitted frame, ε is generated
randomly in the interval [−0.5, 0.5] to span the whole range
of fractional CFO. The filter is initialized by a normalized
CFO value of 0 to indicate that we have no prior knowledge
of the actual CFO value. The performance of the EKF is
investigated for different number of null subcarriers, L. In
the curve corresponding to L = 1, only the DC subcarrier
was used in the estimation process. The next curve shows
the performance with L = 3, where the considered nulls
are the DC and the first null subcarrier on each edge of the
spectrum. The third curve depicts the performance of the filter
in the case of L = 12. We can see from Fig. 1 that selecting
L = 3 gives a satisfactory performance with much lower
complexity than using the whole null band. This is attributed
to the fact that the information about the CFO is contained in
the amount of ICI that it causes to its neighboring subcarriers.
As a result, taking one null subcarrier at each edge of the
spectrum captures most of the information about the CFO and
additional null subcarriers do not provide significant additional
information. Thus, L = 3 is used in the remainder of this
section. Fig. 1 also shows the RMSE of the batch algorithm
[6] that utilizes the available 120 OFDM symbols. We can see
that the performance of the EKF is very close to that of the
batch estimator.

Next, we investigate the effect of Eb/N0 and normalized
Doppler on the performance of the estimator. We compare the
performance of the proposed algorithm with both the conven-
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Fig. 4: BER versus Eb/N0 at fdT = 0.025

tional cyclic prefix correlator with infinite memory length, and
the algorithm presented in [8] whose subsequent simulations
are done for a BPSK constellation, unless otherwise stated.
Fig. 2 shows the RMSE in the CFO estimate after 100
iterations versus the normalized Doppler at different values
of Eb/N0. The figure shows the robustness of the proposed
algorithm to severe temporal variations in the channel in the
presence of noise. The curves also show the superiority of our
algorithm to [8].

The tracking capability of the Kalman filter is investigated
next, where the normalized CFO linearly changes within the
transmitted frame starting with a value of 0.2 and ending
with 0.35. Fig. 3 shows the estimate produced by the EKF
versus OFDM symbol index. We can see from this figure
that the estimate closely tracks the true value throughout the
transmitted frame.

In Fig. 4 we compute the bit error rate (BER) of a system
with a normalized CFO value of 0.2. We consider a perfectly
synchronized system, i.e., we use a value of φ = 0.2, as well
as CFO-compensated system using the estimated value of the
CFO output from the proposed algorithm and algorithm [8].
BPSK and 16-QAM constellations are considered. From the
figure, we can notice that the curves corresponding to the
BPSK constellation approximately coincide. On the contrary,
for the 16-QAM constellation, the curve of the proposed algo-
rithm matches that of the perfectly synchronized system, while
algorithm [8] experiences a severe performance degradation.

V. CONCLUSION

In this paper, a low-complexity fractional CFO estimation
and tracking algorithm is proposed. The proposed algorithm is
CSI independent as it utilizes the null subcarriers. In addition,
it does not require any training. Simulation results show the
robustness of the proposed algorithm to noise as well as high
Doppler shifts. Moreover, simulations show that the proposed
algorithm is capable of accurately tracking the CFO when it
changes throughout the transmitted frame.
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