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ABSTRACT
One of the main enablers of dynamic spectrum access is fast
and reliable spectrum sensing. Acquiring the occupation sta-
tus of a spectral band can be accomplished in different ways,
one of which is called cyclostationary spectrum sensing. The
aforementioned method exploits the prior knowledge of peri-
odicities inherent in most man-made signals for the purpose
of detecting their presence in a set of sample data. One pre-
requisite for the detection is the knowledge of the signal’s
cyclic autocorrelation (CA), which can be estimated from a fi-
nite amount of time-domain samples. This work introduces a
new method for estimating the CA using a very small amount
of time-domain samples, i.e. a short observation time. This
is accomplished by modeling the desired CA vector using a
custom dictionary describing its known properties and recov-
ering it by solving a convex optimization problem.

Index Terms— compressive sampling, convex optimiza-
tion, cyclic autocorrelation, spectrum sensing

1. INTRODUCTION

In the recent past, the use of wireless communication tech-
nologies has increased dramatically. Despite technological
advancements aimed at boosting the achievable utilization of
the given radio spectrum, this lead to the advent of spectral
scarcity in certain bands. In stark contrast to that, other bands
making up a large part of the spectral band suitable for ra-
dio communication are idle either most of the time or in most
geographical regions as a result of traditional licensing poli-
cies [1]. To tackle this problem, the use of dynamic spectrum
access (DSA) has been proposed as a part of a new paradigm
for wireless communication centered around the cognitive ra-
dio (CR) [2]. The idea is to let intelligent transceivers dy-
namically allocate bandwidth to a secondary system when the
licensee of said band, i.e. the primary system, is not occupy-
ing it. The main technology enabling reliable DSA is spec-
trum sensing, i.e. before utilizing some spectral band, the
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secondary system has to make sure that it is unoccupied in
order to not interfere with the primary system’s usage of its
licensed band.

One way of probing a band’s occupancy status is to test
for the presence of cyclostationarity. This method exploits the
fact that most man-made signals vary periodically with time
[3] and can thus be characterized as cyclostationary. Although
the data contained in a modulated signal may be a purely
stationary random process, the coupling with sine wave car-
riers, pulse trains, repeating, spreading, hopping sequences
and cyclic prefixes going along with its modulation causes a
built-in periodicity [4]. This underlying periodicity can be ex-
ploited for detecting the presence of a signal despite contam-
ination with noise. One method for detecting the presence of
cyclostationarity in a signal is the time-domain test as detailed
in [5].

A prerequisite of said time-domain test is the cyclic au-
tocorrelation of the observed signal. The CA function of a
signal x(t) is given by [3]:

Rαx (τ) = lim
T→∞

1

T

T/2∫
−T/2

x(t+ τ/2)x∗(t− τ/2)e−j2παtdt.

(1)
For purely stationary signals, it holds that Rαx (τ) = 0 for all
α 6= 0, while for cyclostationary signals Rαx (τ) 6= 0 for some
α 6= 0. The α with non-zero CA coefficients are called cy-
cle frequencies. The set of cycle frequencies caused by one
of potentially multiple incommensurate second-order period-
icities in a cyclostationary signal comprises the periodicity’s
fundamental cycle frequency (the reciprocal of the fundamen-
tal period) as well as its harmonics (integer multiples). Since
the CA is zero on its whole support except the set of cycle
frequencies and α = 0, it can be called sparse. The CA’s
sparsity can be taken advantage of for the purpose of estimat-
ing it given a short observation time.

Sparsity has been exploited for signal recovery for a long
time [6]. However, the topic has seen enormous development
in the last decade, leading to a new sampling-paradigm called
compressive sampling (CS) [7] [8]. A discrete signal which
is sparse in some domain carries a lot less information than
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suggested by its dimension. However, when the signal is ob-
served in some other domain, its low information load may
not be directly visible so that the number of samples that
needs to be taken in order to acquire the signal depends on
the signal’s dimension instead of the amount of information
it carries. Applying CS techniques, the signal to be acquired
can be recovered from a small amount of samples by solv-
ing a convex optimization problem. Practically, this means
that in contrast to traditional methods for estimating the CA,
employing a solution based on CS will reduce the necessary
observation time. Apart form cyclostationary spectrum sens-
ing, the CS theory has seen utilization in different branches of
spectrum sensing as for example in energy detection [9] [10].

The performance of estimating the CA via compressive
sampling has been investigated in [11]. The algorithm devel-
oped in said paper will be used as a benchmark against which
this paper’s contribution will be compared. Another example
of employing CS for the recovery of the CA is found in [12].

The contribution of this paper lies in developing an algo-
rithm for reconstructing the CA of an observed signal with a
high accuracy while further diminishing the minimum viable
observation time compared to [11]. Our algorithm is based
on the central idea behind CS. However, in addition to the
sparsity property, it exploits further prior knowledge about
the signal.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the signal model as well as the traditional
CA estimation method. In Section 3 the estimation algorithm
from [11] and the new algorithm are presented and the intu-
ition behind their design is given. The numerical simulation
of the three approaches as well as the interpretation of the
results is given in Section 4. Section 5 concludes the paper.

2. ANALYTICAL MODEL AND TRADITIONAL CA
ESTIMATION METHOD

In order to decide about a spectral band’s occupancy status,
a CR receiver observes the time-domain signal x(t) in the
baseband. The signal is sampled uniformly with a sampling
period Te, resulting in the sample vector xt ∈ CN , where

xt = [x(0), x(Te), ..., x((N − 1)Te)]
T. (2)

Due to the nature of man-made signals, xt is a discrete zero-
mean (almost) cyclostationary process [5]. To detect the pres-
ence of periodicity in the sampled band, the CR needs to run
a detection algorithm on the signal’s CA. For this purpose,
the CA can be obtained in multiple ways, one of which is the
traditional unbiased estimator as used in [5]. It is given by

R̂αx (τ) =
1

N

N−1∑
t=0

x(tTe)x
∗(tTe + τ)e−j2πατ . (3)

With α ∈ { i
NTe
|N−1i=0 } and choosing the delay τ to be an

integer multiple of the sampling period, we define the CA

vector as

r̂τ0x = [R̂0
x(τ0), ..., R̂

N−1
NTe
x (τ0)]

T. (4)

This vector is a scaled discrete Fourier transform (DFT) of
the delay-product yτ0 = xt ◦ xt+τ0 , where ◦ denotes the
component-wise multiplication. Thus, the CA vector can also
be written as

r̂τ0x =
1

N
Fyτ0 , (5)

where F denotes the DFT matrix.
This work uses an artificially generated BPSK signal with

symbol length Ts for evaluating the performance of the CA
estimation algorithms. The fundamental cycle frequency of
the built-in periodicity of this signal is 1

Ts
. A theoretical ex-

pression for the CA of a BPSK signal is given in [3]. For a
rectangular transmission window its absolute value reduces to

|R̃αx (τ)| =

{
0 for α 6= k

Ts
, k ∈ Z

|Ts−τ |
Ts

sin(πα(Ts−τ))
πα(Ts−τ) otherwise.

(6)
Its value at the relevant frequencies α are arranged into a vec-
tor in the following way as to match the format of the DFT
matrix.

r̃τ0x [i] =


∣∣∣∣R̃ i

NTe
x (τ0)

∣∣∣∣ for i ∈ {0, ..., N2 },∣∣∣∣R̃ i−N
NTe
x (τ0)

∣∣∣∣ for i ∈ {N2 + 1, ..., N − 1}.

(7)
In the present work, this term will be used as a theoretical

reference for the CA estimation algorithms.

3. OPTIMIZATION PROBLEMS

3.1. Basic CS Approach

To estimate the N -element CA vector, the traditional estima-
tor (3) needs the knowledge of all N elements of yτ0 . In con-
trast to that, the CA estimation algorithm presented in [11]
can recover the CA vector from the first n � N elements of
yτ0 , such that the observation time necessary for reliable de-
tection is drastically reduced. This improvement is facilitated
by the employment of CS, i.e. the exploitation of the CA’s
sparse property. The CA vector’s sparsity is apparent since
it holds non-zero entries only for α = 0 as well as a built-in
periodicity’s fundamental cycle frequency and its harmonics.

The n known entries of yτ0 define a set of constraints
given by the following under-determined system of equations

NMF−1r̂τ0x = ỹτ0 , (8)

where M contains the first n lines of the N × N identity
matrix, F−1 is the IDFT matrix of according size and

ỹτ0 = Myτ0 . (9)
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Intuitively, this means that the CA vector that is to be recon-
structed has to match the n samples which have been ob-
served. The constraints span a set of possible solutions for
yτ0 giving rise to the under-determined linear inverse prob-
lem of finding the right CA vector in the set. Applying the
prior knowledge about the vector’s sparsity, the sparsest vec-
tor from the set , i.e. the one with the lowest `0-“norm” (‖·‖`0 )
should be picked as the solution, where ‖ · ‖`0 is defined as
the number of non-zero entries in a vector. However, this is
impractical since the problem at hand is NP-hard. Making
use of the recent developments in the field of sparse recov-
ery, i.e. CS, the problem can be solved by picking the vector
with the lowest `1-norm instead of the lowest `0-“norm”. This
approach is viable since for most large under-determined sys-
tems of linear equations the minimal `1-norm solution is also
the sparsest solution [13]. The resulting convex optimization
problem is given by

minimize
r̂
τ0
x

‖r̂τ0x ‖`1

subject to NMF−1r̂τ0x = ỹτ0 .
(10)

3.2. CA Dictionary Approach

Compared to the basic CS approach a more detailed model
of the CA will be developed, allowing us to further reduce
the required amount of sensing data while keeping the re-
construction accuracy high. To accomplish this, the desired
CA vector is divided into a sum of three solution vectors, i.e.
r̂τ0x = e+f+g resulting in the following convex optimization
problem

minimize
e,f ,g,z

‖D−1z‖`1 + βa‖z‖`1 + βb‖f‖`1

subject to NMF−1(e+ f + g) = ỹτ0

Cz ≥ |g|.

(11)

Subsequently, an intuition for the inner workings of this opti-
mization problem will be given. The vector e = [ẽ, 0, ..., 0]T

represents the conventional autocorrelation function. Since
we cannot make any statement about its value from the knowl-
edge about the signal’s cyclostationarity, it is not part of the
objective, meaning that we don’t discriminate possible solu-
tion vectors based on their ẽ. It only needs to match the ob-
served samples which is enforced by the first constraint.

For each periodicity that appears in the signal, the CA
vector shows non-zero entries at the periodicities’ respective
fundamental cycle frequency and at its harmonics. This is
modeled by constructing a dictionary D describing the struc-
ture of the CA vector. Each column of D ∈ {0, 1}N2 ×N2
represents one of the possible cycle frequencies contained in
the set α ∈ { i

NTe
|N/2i=1}. For simplicity, this set is chosen such

that the frequencies contained in it hit center frequencies of
the CA’s DFT bins. An entry of the dictionary covers ele-
ments 1 to N

2 of r̂τ0x which is indexed from 0 to N − 1. The

dictionary is built according to the following rule

[D]ij =

{
1 if i mod j = 0
0 otherwise. (12)

An example of size 6 is given by

D6 =


1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 0
1 1 1 0 0 1

 (13)

Note, that the dictionary exhibits a full rank independent of
its size and can thus be inverted.

The vector z is directly modeled with D. Indeed, it is a
sum of weighted dictionary entries. Given the special sparse
property of the CA vector which is reflected in the dictionary,
the term D−1z, i.e. the vector z mapped to the dictionary do-
main, exhibits one non-zero entry for each of possibly multi-
ple incommensurate periodicities in the observed signal. Ob-
viously this is desired to be sparse leading to the first term in
the objective. Sampling at a rate higher than the symbol rate
of the signal and expecting a low number of incommensurate
periodicities in the signal, z is sparse too, giving rise to the
second term in the objective.

The connection between the model (represented by the
dictionary) and the observed data is the vector g. Since the
CA vector is complex-valued (r̂τ0x ∈ CN ), its non-zero el-
ements have both an amplitude and a phase. However, the
dictionary is real and can only describe the CA’s amplitude.
Thus, the second constraint makes a connection between z
and the absolute value of g instead of g’s actual value. Fur-
thermore, the CA is symmetric to its DC component, which
is why z ∈ RN

2 only describes the positive frequencies. In
contrast to that, g ∈ CN describes the whole CA vector. The
matrix C ∈ {0, 1}N×N2 mirrors z as to fit the format of r̂τ0x
and g. For z to actually represent the amplitude of g, the sec-
ond constraint would have to read Cz = |g|, which would
lead to the optimization problem not being convex. Thus, the
equality has to be relaxed to the present inequality.

The non-zero elements in r̂τ0x stemming from a period-
icity in the observed signal, i.e. the one at the fundamental
cycle frequency as well as its harmonics, can have different
amplitudes. This is not taken care of by the dictionary, as all
entries of a dictionary word are weighted by the same factor.
Therefore, the residuum vector f is introduced. Naturally, f
should be (nearly) sparse, which is reflected in the third term
of the objective.

4. NUMERICAL EVALUATION AND ANALYSIS OF
THE RESULTS

To compare the three methods for reconstructing the CA vec-
tor presented in the preceding sections, we investigate the
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Fig. 1. MSE of recovery, no noise in the signal; left: overall,
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Fig. 2. MSE of recovery from 240 samples, different SNRs;
left: overall, right: peaks

mean square error (MSE) of the respective recovered CA vec-
tors to the theoretical curve (7). The three algorithms are run
on a BPSK signal generated with the parameters given in table
1. The convex optimization problems are solved employing
the CVX software package [14].

The sequence of symbols is drawn randomly from a uni-
form distribution and the noise is distributed according to a
zero-mean Gaussian distribution. The variance of the noise
is defined by the respective SNR, where the SNR is defined
as the signal energy of all (N + τ0) observed time-domain
samples divided by the noise energy of all observed samples.

Table 1. Scenario parameters
Parameter Symbol Value(s)
Size of the CA vector N 2000
# of known delay-product entries n {240, 320, 400, 480, 560}
Time delay τ0 2Te
BPSK symbol length Ts 8Te
Signal to noise ratio SNR {−10,−5, 0, 5, 10}dB
Regularization parameters βa 0.25

βb 1

In the following, the overall MSE and the MSE at the
peaks are defined as follows

MSEoverall =
1

N

N−1∑
i=0

(|r̂τ0x [i]| − r̃τ0x [i])
2

MSEpeaks =
1

npeaks

∑
j∈P

(|r̂τ0x [j]| − r̃τ0x [j])
2
,

(14)

where the set P contains all indices of the frequency bins rep-
resenting cycle frequencies, their harmonics and the DC com-
ponent.

Figure 1 shows the overall MSE as well as the MSE at the
peaks resulting from applying the three presented methods,
namely the traditional CA estimation, the basic compressive
sampling approach and the custom dictionary based approach
to the problem of estimating the CA vector from time-domain
samples which are not contaminated by noise. While the tra-
ditional method estimates the N -element CA vector from all
of the N elements of the delay-product vector yτ0 , the basic
CS approach and the CA dictionary approach recover the CA
vector from the first n � N elements of yτ0 , where n is la-
beled on the x-axis. As can be seen in the plot, the sparse
recovery approaches manage to match the performance of
the traditional estimator with a drastically reduced number of
samples. The additional knowledge used in the CA dictionary
approach leads to a better error performance compared to the
basic CS approach, which only exploits the CA vector’s spar-
sity. Due to its strong assumption of the CA vector matching
some dictionary entries, the CA dictionary approach favors
solution vectors with very little estimation noise between the
peaks and thus takes less samples to outperform the tradi-
tional method regarding the overall MSE than the MSE at the
peaks.

While the CA should be independent of stationary noise,
its estimation from a finite number of samples is not. This
can be observed in figure 2, where the overall MSE as well
as the MSE at the peaks produced by the three respective ap-
proaches is plotted over the ratio of the signal energy to the
energy of additional white Gaussian noise. For the noisy case,
the equality constraints of both optimization problems have
been replaced by an `2-norm ball constraint. Here, the effect
of the sparsity assumption made by the two sparse recovery
approaches can be observed, since given this noisy scenario,
the traditional method performs worst in the overall MSE due
to its higher estimation noise between the peaks although it
uses more than 8 times as much samples for the estimation.
Concerning the MSE at the peaks, the sparse recovery meth-
ods cannot match the error performance of the traditional ap-
proach given the low number of samples. In all cases and
parameter sets investigated, the CA dictionary approach pro-
duces a smaller average error than the basic CS approach.

5. CONCLUSION

In this work, a new approach for estimating the CA vector has
been introduced. It makes extensive usage of prior knowledge
about the vector to be reconstructed in order to diminish the
number of samples necessary for reliably reconstructing the
CA. Due to its more detailed model of the CA it outperforms
the basic CS approach introduced in [11].
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