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ABSTRACT

We consider the problem of joint-state estimation for mobile

wireless sensor networks (WSN) using noisy analog observa-

tions from spatially-distributed sensors. Due to communica-

tion bandwidth constraints, sensors can transmit only quan-

tized observations. As opposed to existing estimators that

process either only quantized or only analog observations,

we develop a Maximum A Posteriori-based hybrid estima-

tion framework that enables each sensor to utilize its own

local analog observations as well as quantized observations

received from other sensors to improve estimation accuracy.

Index Terms— Distributed MAP estimation, wireless

sensor network, communication constraints

1. INTRODUCTION AND RELATED WORK

For sensor localization in GPS-denied environments, mo-

bile WSN (e.g., mobile robots) combine noisy observations

of motion (e.g., velocity) and relative position (e.g., dis-

tance/bearing to each other), from all sensors, to accurately

estimate their joint-state, i.e., their positions and velocities.

Since the sensors are spatially distributed, transmitting these

analog observations incurs substantial communication over-

head. In this work, we focus on WSN localization in the

presence of severe communication-bandwidth constraints,

where each sensor can transmit only a few bits per analog

observation. Thus, every sensor carries out lossy quantization

of its observations and the commonly-used estimation frame-

works for analog observations [e.g., the Kalman Filter (KF)

or the Maximum A Posteriori (MAP) estimator] have to be

modified to accommodate these quantized observations.

While there exists a large body of work on parameter es-

timation (either deterministic [1, 2, 3] or random variable [4,

5, 6]) for WSN, we consider approaches that were developed

to estimate random processes, as is the case in sensor local-

ization. The Sign-of-Innovation Kalman filter, for estimating

stochastic, dynamic processes, has been proposed [7], where

the measurement innovation1, instead of the actual analog

This work was supported by the University of Minnesota through the

Digital Technology Center (DTC), and AFOSR (FA9550-10-1-0567).
1Measurement innovation is the difference between the actual and the

estimated (by the estimator) measurement.

measurement2, is quantized to a single bit. When f ≥ 1 bits

are available, this approach has been extended in [8] to the

batch and iteratively quantized KF, where with f = 4 bits,

the performance is almost indistinguishable from that of the

standard KF. These estimators are derived for linear, Gaus-

sian motion and measurement models and they approximate

the posterior probability density function by a Gaussian3 after

each measurement update, to reduce computational complex-

ity. For nonlinear models, in order to mitigate the effect of

linearization and Gaussian approximations carried out above,

extensions of this approach to the MAP estimator (that acts as

a smoother), for single bit (QMAP) and multiple bits (batch

and iteratively quantized BQMAP and IQMAP, respectively),

are presented in [9, 10, 11].

The quantized innovation estimators discussed above use

the multi-centralized (MC) architecture (robust to single point

failures) where each sensor broadcasts all its observations and

every sensor locally processes observations from the entire

network to generate joint-state estimates. However, the quan-

tization rules used by these estimators depend upon the com-

puted state estimates, via the measurement innovation, and

thus all sensors have to maintain identical estimators to ensure

estimation consistency. Hence, each sensor is forced to use

quantized versions of its own locally-available, analog obser-

vations for estimation, thus discarding valuable information

that can be used to improve localization accuracy.

To overcome this drawback, we have introduced a hy-

brid estimation framework in [12, 13], for Minimum Mean

Squared Error (MMSE) estimation (filtering), that enables

each sensor to incorporate its locally-available, analog obser-

vations in the estimation process. Specifically, each sensor

maintains two local estimators (see Fig. 1): (i) a quantized

(Q) estimator that processes quantized observations from

all sensors, including itself, and (ii) a hybrid (H) estimator

that processes its own analog observations along with the

quantized observations from other sensors. In this paper, we

extend the hybrid estimation framework to MAP estimation

and derive a (H) estimator, called H-BQMAP, that by us-

ing its own analog observations can outperform the existing

BQMAP, that uses only quantized observations.

2We use measurement and observation interchangeably.
3Note that due to the nonlinearity of the quantization operation, the pos-

terior pdf is not, in general, a Gaussian.
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2. PROBLEM FORMULATION

Consider a mobile WSN consisting of N sensor nodes. The

motion (process) model for the WSN is given by the following

linear, discrete-time, dynamic system driven by system noise:

xk = Fk−1xk−1 +Gk−1wk−1, p(x0) ∼ N (x(0),P0) (1)

where, wk is the zero-mean, white, Gaussian, and uncorre-

lated system noise at time-step k with covariance given by

E
[

wkwl
T
]

= δklQk. Here, xk = [x1
k

T
,x2

k

T
, . . . ,xN

k

T
]T ,

is the joint-state of the sensor network and xi
k denotes

the state4 of each individual sensor i at time-step k, k =
0, . . . ,K. p(x0) is the prior on the sensors’ initial states.

Sensor i obtainsM i
k scalar, analog measurements at time-

step k. Sensor i’s measurement model, i = 1, . . . , N , is:

zikm = hiT

kmxk + vikm, m = 1, . . . ,M i
k (2)

where vikm is zero-mean, white, Gaussian, and uncorre-

lated measurement noise with E[vikmv
i
ln] = δkl,mnσ

i2

km and

E[vikmv
j
ln] = 0, ∀j 6= i, j = 1, . . . , N . The noise terms in

the process and measurement models are independent. We as-

sume that: (i) the process and measurement models are shared

a priori by all sensors before deployment, and (ii) each sensor

can communicate with the team at every time step. The linear

models (1)-(2) are used to simplify the mathematical deriva-

tions. In real-world scenarios, the linearized system, obtained

from the underlying non-linear models, will be used. More-

over, a single vector-valued measurement can be decomposed

into multiple scalar measurements using pre-whitening [14]

and then processed using the above formulation. Lastly, in or-

der to simplify the notation in this paper, from now onwards,

we assume that each sensor i obtains only a single, scalar,

analog measurement, zik, at time-step k. The generalization

to M i
k measurements is straightforward.

2.1. Real vs. Quantized Measurements

In the absence of communication-bandwidth constraints, the

Maximum A Posteriori (MAP) estimate, x̂0:K , of all sensors’

states from time-step 0 to K, given all analog measurements

up to time-step K, z0:K , is calculated as:

x̂0:K = argmax p(x0:K |z0:K)

= argmax
1

p(z0:K)
p(z0:K |x0:K)p(x0:K)

= argmax
1

p(z0:K)

K
∏

k=0

N
∏

i=1

p(zik|xk)

K−1
∏

k=0

p(xk+1|xk) · p(x0)

(3)

Here, z0:K = [(z10:K)T , . . . , (zN0:K)T ]
T

where, zi0:K =

[zi0, . . . , z
i
K ]

T
, i = 1, . . . , N . Under the Gaussian noise as-

sumption for the linear system (1)-(2), the conditional pdfs

4For example, for the sensor localization task, the joint-state consists of

the positions and velocities of all the sensors.

in (3) and hence the posterior pdf p(x0:K |z0:K) are Gaussian.

Therefore, the optimization problem in (3) can be formulated

as a Weighted Least Squares and solved using standard meth-

ods [15] such as normal equations, QR decomposition, etc.

However, note that the real-valued measurements, z0:K , from

all sensors, are required for solving the optimization problem

in (3) and each sensor i has to broadcast its measurements,

zi0:K , to the WSN.

On the contrary, in WSNs with severe power and commu-

nication bandwidth limitations, each sensor can communicate

only f ≥ 1 bits per analog measurement. Therefore, sensor i
must quantize its analog measurement, zik ∈ R, to bik ∈ B,

B := {1, . . . , 2f} using a quantization rule q[·] of the form:

bik = q[zik], where q : R → B (4)

Thus, the MAP estimate of the sensors’ states, x̂
Q
0:K , given

quantized measurements, b0:K , from all sensors, up to time-

step K is calculated as:

x̂
Q
0:K = argmax p(x0:K |b0:K)

= argmax
1

p(b0:K)

K
∏

k=0

N
∏

i=1

p(bik|xk)

K−1
∏

k=0

p(xk+1|xk) · p(x0)

(5)

Importantly, note that due to the nonlinear quantization op-

eration in (4), the conditional pdf p(bik|xk) and hence the re-

sulting posterior pdf are no longer Gaussian even for the linear

process and measurement models.

In the BQMAP estimator [10, 11], that generates these

bits by quantizing the measurement innovation, zik −hiT

k x̂
Q
τk,

it has been shown that the resulting pdf p(x0:K |b0:K) in (5)

is log-concave in x0:K . Hence, we can find a unique, glob-

ally optimum solution for the BQMAP estimator. Here, the

state estimate x̂
Q
τk is chosen to be the latest available MAP

estimate (using quantized measurements only) for xk. How-

ever, a shortcoming of this approach is that even though each

sensor i has access to its own analog measurements, zi0:K , the

quantized-innovation BQMAP estimator forces it to discard

this information and process only the corresponding quan-

tized measurements, bi
0:K . This is because the quantized

measurement, bik, depends upon the estimated measurement,

hiT

k x̂
Q
τk, which has to be identical for all sensors to ensure

consistent estimation. Therefore, all sensors have to process

the same set of measurements, so that they can generate iden-

tical state estimates, x̂
Q
τk. In Fig. 1, when the shaded Hybrid

Estimators do not exist, we obtain the BQMAP.

3. HYBRID ESTIMATION FRAMEWORK

In [12, 13], we introduced a hybrid estimation framework

for filtering that enables each sensor to obtain MMSE state

estimates (under Gaussian assumption) by processing local

analog and remote quantized measurements. In this work,
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Fig. 1. Hybrid Estimation framework. Here, ψi
k = hiT

k x̂
Q
τk,

k = 0, . . . ,K, i = 1, 2, and using the quantization rule in (6),

the H- and Q-estimators correspond to the H-BQMAP and

BQMAP, respectively.

we focus on MAP estimation since for the nonlinear pro-

cess/measurement models in real-world systems, the MAP

estimator acts as a smoother and mitigates linearization er-

rors, hence improving estimation accuracy. To achieve this,

we propose that each sensor i maintains two estimators (see

Fig. 1): (1) a quantized (Q) estimator that processes quantized

measurements from all sensors including itself, i.e., x̂
Q
0:K =

argmax p(x0:K |bq 6=i
0:K ,b

i
0:K), and (2) a hybrid (H) estimator

that processes its own real-valued measurements and quan-

tized measurements from the other sensors in the team, i.e.,

x̂Hi

0:K = argmax p(x0:K |bq 6=i
0:K , z

i
0:K), q = 1, . . . , N . The

estimates generated by the Q-estimator are identical for all

sensors since each sensor processes identical measurements,

b0:K =
{

b
q 6=i
0:K ,b

i
0:K

}

. Therefore, they are used in the hy-

brid estimation framework for generating identical quantiza-

tion thresholds for all sensors, as will be shown in the next

section. On the contrary, the estimates generated by the H-

estimator are different for each sensor, since each sensor pro-

cesses a different set of quantized and analog measurements.

In the next section, we will derive the Q-and H-estimators,

BQMAP and H-BQMAP, respectively, for the quantization

scenario where the bandwidth availability (f bits per analog

measurement) is known a priori.

3.1. Quantization Rule

Since sensor j is pre-informed about the availability of f ≥ 1
bits for communicating its analog measurement zjk ∈ R, sen-

sor j partitions the observation space R into 2f intervals. The

interval Rj
k(n) := [τ jk(n), τ

j
k(n + 1)), where τ jk(n) are the

quantization thresholds, n ∈ B := {1, . . . , 2f}, τ jk(1) =

−∞, τ jk(2
f + 1) = ∞, and τ jk(n) < τ jk(n + 1). The quan-

tization rule, based on the measurement innovation, has the

form5 [8]:

5We assume a round-robin scheduling algorithm where the quantized

measurements are generated and processed sequentially, based on sensor ids.

Therefore, sensor i generates and communicates its quantized measurement,

bi
k

, before sensor (i + 1). Moreover, all sensors in the team process bi
k

to

b
j

k = n, iff τ
j

k(n) < z
j

k − h
jT

k x̂
Q

τk ≤ τ
j

k(n+ 1) (6)

where, x̂
Q
τk is the BQMAP’s latest available estimate for the

state xk. The thresholds τ jk(n) are defined as:

τ jk(n) = ∆(n)

√

(hjT

k Pkh
j
k + σj2

k ) (7)

where Pk is the covariance of the estimate x̂
Q
τk and ∆(n)

corresponds to the Lloyd-Max quantization thresholds [16,

17]. This is equivalent to quantizing the measurement in-

novation, zjk − h
jT

k x̂
Q
τk, with minimum MSE distortion [8].

Note that sensor j uses its BQMAP’s estimate in (6) that is

identical for all sensors. This enables all sensors to correctly

process/decode the quantized measurement, since this esti-

mate is needed in the design of the H-BQMAP and BQMAP

(see (8), (9), and [11]). Sensor j cannot use its H-BQMAP’s

estimate since it depends upon its local analog measurements,

z
j
0:K , which are unavailable to the rest of the sensors.

3.2. BQMAP and H-BQMAP Estimators

For the batch quantization rule from (6), we now derive the

resulting (Q) and (H) MAP estimators for the hybrid estima-

tion framework. Note that the Q-estimator, by definition, is

identical to the BQMAP in [10] and is not described here to

conserve space. Before proceeding, we first calculate the con-

ditional probability p(bqk = n|xk) as follows:

p(bqk = n|xk) = Pr{τ q

k (n) < z
q

k − h
qT

k x̂
Q

τk ≤ τ
q

k (n+ 1)|xk}

=

(

Q

[

τ
q

k (n)− h
qT

k (xk − x̂
Q

τk)

σ
q

k

]

− Q

[

τ
q

k (n+ 1)− h
qT

k (xk − x̂
Q

τk)

σ
q

k

])

(8)

where, Q[x] =
∫∞
x

1√
2π

exp(−u2/2)du, is the Gaussian

tail probability and we use the fact that the conditional pdf

p(zqk|xk) ∼ N (hq
k

T
xk, σ

q2

k ). We now present the deriva-

tion for sensor i’s H-estimator, the H-BQMAP. The MAP

estimate, x̂Hi

0:K , computed by sensor i’s H-estimator using

(i) its own analog measurements, zi0:K , and (ii) quantized

bits, b
q 6=i
0:K , q = 1, . . . , N , received from other sensors in the

team is given by:

x̂
Hi

0:K = argmax p(x0:K |bq 6=i
0:K , z

i
0:K)

= argmax

(

1

p(bq 6=i
0:K , zi0:K)

K
∏

k=0

p(zik|xk)

K
∏

k=0

N
∏

q=1,q 6=i

p(bqk|xk)

×

K−1
∏

k=0

p(xk+1|xk) · p(x0)

)

(9)

obtain x̂
Q
0:k,i, before sensor (i+ 1) generates its quantized measurement.
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where we obtain (9) using Bayes’ rule. For the linear

model of (1)-(2), p(xk+1|xk) ∼ N (Fkxk,GkQkG
T
k ) and

p(zik|xk) ∼ N (hi
k

T
xk, σ

i2

k ). Therefore, the above equation

can be written as:

x̂
Hi
0:K = argmax p(x0:K |bq 6=i

0:K , zi0:K)

= argmax

(

K
∏

k=0

N (hi
k

T
xk, σ

i2

k )

K
∏

k=0

N
∏

q=1,q 6=i

p(bq
k
|xk)

×
K−1
∏

k=0

N (Fkxk,GkQkG
T
k )N (x(0),P0)

)

= argmin

(

K
∑

k=0

1

2
||zik − hi

k

T
xk||

2

σi−2

k

−
K
∑

k=0

N
∑

q=1,q 6=i

log p(bq
k
|xk)

+

K−1
∑

k=0

1

2
||xk+1 − Fkxk||

2
(GkQkG

T
k
)−1

+
1

2
||x0 − x(0)||2

P
−1

0

)

(10)

where p(bqk|xk) is as defined in (8). The p(bq 6=i
0:K , z

i
0:K) is

a normalizing constant that is neglected during optimization.

Next, we prove a very important property for the posterior pdf

p(x0:K |bq 6=i
0:K , z

i
0:K).

Lemma 1. The posterior pdf of the H-BQMAP in (9) is log-

concave.

Proof. Consider the innovation term rqk = zqk − h
qT

k x̂
Q
τk,

where p(rqk|xk) ∼ N (hqT

k (xk − x̂
Q
τk), σ

q2

k ). This conditional

pdf is log-concave in both arguments. Therefore, p(bqk|xk) =
∫ τ

q

k
(n+1)

τ
q

k
(n)

p(rqk|xk)dr
q
k is also log-concave since it involves

the integral over a convex set of a log-concave pdf [18]. Thus,

both the Gaussian pdfs and (8) are log-concave. Also, log-

concavity is closed under multiplication and preserved under

linear transformation of the argument [19, 10].

We conclude that, due to the log-concavity of this pos-

terior pdf, the optimization problem in (10) is nonlinear but

convex. Hence, it is guaranteed to converge to the global op-

timum and can be solved using efficient convex optimization

techniques [19] such as Newton’s method, the interior point

methods, etc. Moreover, its solution, i.e., the MAP estimate,

is unique and the global optimum.

4. SIMULATION RESULTS

The simulation set up consists of two sensors deployed in 1D.

The motion model for these sensors is given by a constant

velocity statistical model [20]. Each sensor obtains noisy

measurements for its own velocity, vm, and distance, dm, to

the other sensor, with the noise modeled as zero-mean, white

Gaussian with std. dev. σvm
= 0.01 m/s and σdm

= 0.037 m,

respectively. We compare the performance of the proposed H-

estimator, H-BQMAP, using f = {1, 4} bits per analog mea-

surement, with: (1) the Q-estimator (local and remote quan-

tized measurements), BQMAP, and (2) the real-valued MAP

that uses analog measurements from all sensors and hence

is our benchmark. Fig. 2 shows the root mean squared er-

ror (RMSE) in the position and velocity estimates for these

estimators, averaged over the 2 sensors and 10 Monte Carlo

trials. Since the estimates generated by the H-BQMAP are

different for each sensor, the RMSE for H-BQMAP is also

averaged over estimators maintained by each sensor. As evi-

dent from Fig. 2, the estimates generated by the H-BQMAP

are more accurate that the BQMAP, irrespective of the num-

ber of quantization bits considered. This is expected since the

H-BQMAP includes local analog measurements in the esti-

mation process. Specifically, when f = 1, the H-BQMAP

is significantly more accurate than the BQMAP. Overall, the

error in the estimates6 decreases as we increase the number

of quantization bits (results for f = {2, 3} bits not shown

for clarity) and by communicating as few as 4 bits per analog

measurement, both the H-BQMAP and BQMAP are able to

achieve accuracy very close to that of the real MAP estimator.
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(a) Comparison of position RMSE.
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Fig. 2. Comparison of position and velocity RMSE for the

real-valued, quantized and hybrid MAP estimators.

6Note that this gain in estimation accuracy comes at the cost of increased

processing, as each sensor has to maintain both H- and Q-MAP estimators

(see Fig. 1).
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