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ABSTRACT

In this paper, we consider the problem of quantizer design for dis-
tributed estimation under the Bayesian criterion. We derive general
optimality conditions under the assumption of conditionally inde-
pendent observations at the local sensors and show that for a condi-
tionally unbiased and efficient estimator at the Fusion Center, iden-
tical quantizers are optimal when local observations have identical
distributions. This results in an N -fold reduction in complexity
where N is the number of sensors. We illustrate our approach by
applying it to the location parameter estimation problem.

Index Terms— Distributed Estimation, Quantizer Design, Pos-
terior Cramér Rao Lower Bound (PCRLB)

1. INTRODUCTION

Distributed parameter estimation from quantized data has been an
active area of research [1–5]. Identical quantizers at the sensors
have traditionally been used by researchers as it simplifies the de-
sign problem [3] [6]. However, relatively little research has focused
on the optimality of these identical quantizers. For decentralized de-
tection, Tsitsiklis [7] showed the asymptotic optimality of identical
quantizers with conditionally independent and identically distributed
sensor observations. In [1], the authors considered the design of op-
timal quantizers for distributed estimation under different distortion
criteria. Using the minimax criterion, optimal quantizers have been
found in [5] and [4]. The maximum likelihood estimator has been
used at the Fusion Center (FC) in [8] for which the optimal quan-
tizers have been shown to be the score functions. A discussion on
the design of quantizers with design goals of bandwidth efficiency,
scalability and robustness to network changes can be found in [9].
In [10], an algorithm was developed for the design of a non-linear
multiple-sensor distributed estimation system by partitioning the real
line for quantization.

In this paper, we design optimal quantizers for a distributed es-
timation problem under the Bayesian criterion for an arbitrary cost
function. We establish that when the FC uses a conditionally un-
biased and efficient estimator, identical quantizers are optimal. We
illustrate this result by considering the location parameter estimation
problem and obtain conditions under which threshold quantizers are
optimal.

2. PROBLEM FORMULATION

Consider a distributed estimation problem where the problem is to
estimate a random scalar parameter θ at the fusion center (FC). The
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parameter θ has a prior probability density function (pdf) p(θ) where
θ ∈ Θ. There are a total ofN+1 sensors S0, S1, · · · , SN in the net-
work and sensor S0 plays the role of FC whereas the otherN sensors
are peripheral sensors. Each sensor Si, for i = 0, 1, · · · , N receives
a local observation Yi which is a noisy realization of the parameter
θ and takes values in a set Yi. We assume throughout this paper that
Yi’s are conditionally independent and identically distributed, hence
the overall likelihood function is p(y|θ) =

∏N
i=0 p(yi|θ). This like-

lihood function is known at the FC.
Each sensor Si, i 6= 0, quantizes its observation yi, which is a

realization of the random variable Yi, using a local quantizer γi(·).
The quantizer output ui = γi(yi) ∈ 1, · · · , D is transmitted to the
FC error free. The FC uses u1, · · · , uN along with its own observa-
tion y0 (realization of Y0) and estimates the random parameter θ as
θ̂ = γ0(y0, u1, · · · , uN ) ∈ Θ. Here γ0 : Y0 × {1, · · · , D}N → Θ
is a function that will be referred to as the estimator. For i =
1, 2, · · · , N , we use Γi to denote the set of all possible quantizers of
sensor Si. The collection γ = (γ1, γ2, · · · , γN ) of quantizers will
be referred to as a strategy. The estimator is assumed to be given
and, therefore, the strategy only involves local quantizers. We let
Γ = Γ1 × Γ1 × · · ·ΓN , which is the set of all strategies. For i 6= 0,
once a quantizer γi ∈ Γi is fixed, the quantizer output ui at sensor
Si can be viewed as a realization of a random variable Ui defined by
Ui = γi(Yi). Clearly, the probability distribution of Ui depends on
the distribution of Yi and on the choice of the quantizer γi. Similarly,
once the estimator and the strategy are fixed, the global estimate θ̂
becomes a random variable defined by θ̂ = γ0(Y0, U1, · · · , UN ).

In the most general Bayesian formulation, we define a cost func-
tion C : Θ × {1, · · · , D}N × Θ → R, with C(θ̂, u1, · · · , uN , θ)
representing the cost associated with an FC estimate θ̂ and quan-
tizer outputs u1, · · · , uN , when the true parameter is θ. For any
given strategy γ ∈ Γ, its Bayesian cost (or risk) J(γ) is defined as
J(γ) = E[C(θ̂, U1, · · · , UN , θ)], where the arguments of C(·) are
all random variables. An equivalent expression, in which the depen-
dence on γ is more explicit is

J(γ) =

∫
Θ

p(θ)

E[C(γ0(Y0, γ1(Y1), · · · , γN (YN )), γ1(Y1), · · · , γN (YN ), θ)|θ]dθ

The optimal quantizers are those which minimize this cost func-
tion J(γ). For a given γ0(·), the problem can be stated as,

γ∗ = arg min
γ∈Γ

J(γ) (1)

3. OPTIMALITY CONDITIONS FOR CONDITIONALLY
INDEPENDENT OBSERVATIONS

In this section, we provide optimality conditions for quantizers for
an arbitrary cost function under the assumption of conditionally in-

4893978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



dependent observations. We first provide a proposition in Sec. 3.1
which will be used for deriving the optimality conditions. The re-
sults in this section are derived using an approach similar to [11].

3.1. Preliminaries

Let θ be a random parameter to be estimated with prior pdf p(θ) and
let X be a random variable, taking values in a set X , with known
conditional distribution given θ. LetD be some positive integer, and
let ∆ the set of all functions δ : X → {1, · · · , D}. Consistent with
our earlier terminology, we shall call such functions quantizers.

Proposition 3.1 Let Z be a random variable taking values in a set
Z and assume that, conditioned on θ, Z is independent of X . Let
F : {1, · · · , D} × Z × Θ → R be a given cost function. Let δ∗

be an element of ∆. Then δ∗ minimizes E[F (δ(X), Z, θ)] over all
δ ∈ ∆ if and only if

δ∗(X) = arg min
d=1,··· ,D

∫
θ

a(θ, d)p(θ|X)dθ with probability 1

(2)
where

a(θ, d) = E[F (d, Z, θ)|θ] ∀ θ, d (3)

Proof The minimization of E[F (δ(X), Z, θ)] over all δ ∈ ∆ is
equivalent to requiring that δ(X) minimize E[F (d, Z, θ)|X], over
all d ∈ {1, · · · , D}, with probability 1. The expression being mini-
mized can be re-written as E[E[F (d, Z, θ)|θ,X]|X] which by con-
ditional independence of X and Z, is equal to

E[E[F (d, Z, θ)|θ,X]|X] =

∫
θ

E[F (d, Z, θ)|θ]p(θ|X)dθ (4)

Therefore, conditional independence decouples the design of δ∗(X)
from Z, i.e., δ∗(X) depends on Z only through a(θ, d). �

3.2. Optimality Conditions

The optimal strategy which minimizes J(γ) satisfies the following
necessary conditions presented in Proposition 3.2:

Proposition 3.2 For i 6= 0 and suppose that γj ∈ Γj has been fixed
for all j 6= i. Then γi minimizes J(γ) over the set Γi only if

γi(Yi) = arg min
d=1,··· ,D

∫
θ

a(θ, d)p(θ|Yi)dθ with probability 1

(5)
where for any θ and d,

a(θ, d) = E[C(U0, U1, · · · , Ui−1, d, Ui+1, · · · , UN , θ)|θ] (6)

and where each Ui, i 6= 0 is a random variable defined by Ui =
γi(Yi) and U0 = γ0(Y0, U1, · · · , Ui−1, d, Ui+1, · · · , UN ).

Proof Observe that the minimization is of
E[C(U0, U1, · · · , Ui−1, γi(Yi), Ui+1, · · · , UN , θ)|θ] over γi ∈ Γi
where U0 = γ0(Y0, U1, · · · , Ui−1, γi(Yi), Ui+1, · · · , UN ). This
is of the form considered in Proposition 3.1 where X = Yi,
d = γi(X) = γi(Yi), Z is the random vector given by Z =
(Y0, U1, · · · , Ui−1, Ui+1, · · · , UN ) and
F (d, Z, θ) = C(U0, U1, · · · , Ui−1, γi(Yi), Ui+1, · · · , UN , θ).
The result follows from Proposition 3.1 and yields a person-by-
person optimal solution. �

Proposition 3.2 provides the necessary conditions for opti-
mal quantizers for an arbitrary cost function C(·). However, the
optimization problem is difficult to solve in general due to the
complexity of solving N simultaneous optimization problems. For
the remainder of the paper, we consider the design of optimal
quantizers for a specific cost function namely the Mean-Square
Error (MSE), i.e., C(θ̂, U1, · · · , UN , θ) = E[(θ̂ − θ)2] where
θ̂ = γ0(Y0, γ1(Y1), · · · , γN (YN )) and θ is the true parameter.

4. QUANTIZERS FOR CONDITIONALLY UNBIASED AND
EFFICIENT ESTIMATORS

In this section, we find the optimal quantizers in distributed estima-
tion for estimators which are efficient and conditionally unbiased.
By conditionally unbiased, we mean Ex|θ[θ̂] = θ for all θ. The mo-
tivation behind such an analysis is that most of the widely used esti-
mators, among them maximum likelihood estimator and maximum
a posteriori estimator, are asymptotically unbiased and efficient. In
such a scenario, the cost function (MSE) becomes the variance of
the estimator which attains the Posterior Cramér-Rao Lower Bound
(PCRLB). Therefore, the optimization problem can now be formu-
lated as the minimization of PCRLB, or equivalently, the maximiza-
tion of posterior Fisher Information. Since γ0(·) is assumed to be
a fixed efficient, conditionally unbiased estimator, the optimization
is now performed over γ = (γ1, γ2, · · · , γN ). While our results
hold for any estimator that achieves the PCRLB, the design method-
ology also applies to cases where no efficient estimator exist; the
optimization is therein on performance bounds that are not necessar-
ily attainable.

Proposition 4.1 Let Γ denote the set of all possible strategies for
the distributed estimation problem with identical and conditionally
independently distributed sensor observations and ΓI denote the set
of all strategies in which all peripheral sensors use identical quan-
tizers. If an efficient and unbiased estimator exists at the Fusion
Center, there is no loss in estimation performance (characterized by
the Mean Square Error of the estimator) by restricting the search
space of optimal strategy to ΓI . In other words, if an efficient and
conditionally unbiased estimator exists at the FC, there exists an
optimal strategy for which all the peripheral sensors use identical
quantization rules.

Proof The posterior Fisher Information under the conditional inde-
pendence assumption is given by

F (γ) = −Eθ,U,Y0 [∇θ∇Tθ ln p(U, Y0, θ)] (7)

= −Eθ,U[∇θ∇Tθ ln p(U|θ)]− Eθ,Y0 [∇θ∇Tθ ln p(Y0|θ)]
−Eθ[∇θ∇Tθ ln p(θ)] (8)

= FD + F0 + FP (9)

where FD , F0 and FP represent the local sensor data’s contribution,
FC data’s contribution and prior’s contribution to F respectively.

Since the prior’s contribution to F given by FP and FC’s contri-
bution given by F0 are independent of γ, the optimization problem
can be re-stated as

γopt = arg max
γ∈Γ

FD = arg min
γ∈Γ

Eθ,U

[
∂2 ln p(U|θ)

∂θ2

]
(10)

As the sensor observations (Y1, · · · , YN ) are conditionally in-
dependent and the quantizers γi are independent of each other, the
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quantizer outputs are also conditionally independent, i.e. ln p(U|θ) =∑N
i=1 ln p(Ui|θ). The objective function now becomes

Eθ,U

[
∂2 ln p(U|θ)

∂θ2

]
=

N∑
i=1

Eθ,Ui

[
∂2 ln p(Ui|θ)

∂θ2

]
(11)

The solution to this problem is

γopt = arg min
γ∈Γ

N∑
i=1

Eθ,Ui

[
∂2 ln p(Ui|θ)

∂θ2

]
(12)

which can be decoupled into N optimization problems given by

γopti = arg min
γi∈Γi

Eθ,Ui

[
∂2 ln p(Ui|θ)

∂θ2

]
for i = 1, · · · , N

(13)
Since the above N optimization problems are identical when all

the peripheral sensors have identical statistics, they give identical
solutions. Therefore, for an efficient and conditionally unbiased es-
timator, no loss is incurred when identical quantizers are used at the
local sensors. �

Proposition 4.1 states that we can constrain all peripheral sen-
sors to use the same quantization rule, without increasing the MSE
of the efficient, conditionally unbiased estimator. Furthermore, this
optimal quantizer can be found by solving the optimization prob-
lem in (13). In the next section, we find this optimal quantizer for
location parameter estimation under an additive noise model.

5. THE LOCATION PARAMETER ESTIMATION
PROBLEM

In this section, we consider the location parameter estimation prob-
lem where the observations are corrupted by independent and iden-
tically distributed (i.i.d) additive noise with pdf pW (w).

Yi = θ +Wi for i = 1, · · · , N (14)

where θ ∼ pΘ(θ) andWi is the i.i.d noise. The local sensors process
their own observations locally before sending the processed one-bit
data (Ui for i = 1, · · · , N ) to the FC. The FC then estimates θ from
U = [U1 · · ·UN ] and Y0. As shown in the previous sections, for
an efficient and unbiased estimator at the FC, the optimal quantizers
are identical. Let the quantizer be represented by γ(Y ) which maps
the data Yi to one of the two bit values {0, 1}. We represent the
quantizers probabilistically as

γ(Yi) = P (Ui = 1|Yi) (15)

Thus, γ(Yi) denotes the probability with which the ith local
sensor sends a ‘1’ to the FC given its observation, Yi. Stochastic
quantizers are employed here as they cover a wide range of possible
quantizers including both the threshold quantizers and the dithering
quantizers.

5.1. Posterior Cramér Rao Lower Bound

For the location parameter estimation problem, F from (9) is the
posterior Fisher Information [12] which is a function of the prior
distribution pΘ(θ), the quantizer γ(Y ) and the noise pdf pW (w). It
is given as

F (pΘ, γ, pW ) = FD + F0 + FP (16)

where FD , F0 and FP are as defined before.
As the N observations are conditionally independent, we have

FD = NEθ[I(θ)] (17)

where I(θ) is the Fisher Information (FI) for a single observation.
Let g(θ) denote the probability that the quantizer output is ‘1’

given the true value of θ

g(θ) = P (Ui = 1|θ) = EWi [γ(θ +Wi)] (18)

=

∫
y

γ(y)pW (y − θ)dy (19)

For a binary quantizer, the FI is given by [3]

I(θ) =
(g′(θ))2

g(θ)(1− g(θ))
(20)

where g′(θ) represents the first derivative of g(θ) with respect to θ.
From (16), (17) and (20), the posterior FI is given by

F (pΘ, γ, pW ) = N

∫
θ

(g′(θ))2

g(θ)(1− g(θ))
pΘ(θ)dθ + F0 + FP (21)

5.2. Optimal Quantizer Design

The optimal quantizer γ∗(y) minimizes the PCRLB or, equivalently,
maximizes F (pΘ, γ, pW ). Since F0 and FP are independent of the
quantizer, the optimization problem can be stated as

γ∗(·) = arg max
γ(·)

FD = arg max
γ(·)

∫
θ

(g′(θ))2

g(θ)(1− g(θ))
pΘ(θ)dθ

(22)

This problem can be solved by observing that the objective func-
tion FD depends on γ(·) only through g(θ) given in (19) which can
be re-written as g(θ) = (γ(y) ∗ pW (−y))(θ) where ‘*’ represents
the convolution operation. Transforming this into frequency domain
using the Fourier Transform, we get G(f) = H(f)PW (−f) where
G(f), H(f) and PW (f) are the Fourier transforms of g(·), γ(·) and
pW (·) respectively. Therefore, given the noise pdf pW (·), the quan-
tizer γ(·) can be found (if it exists) as

γ(y) = F−1

[
G(f)

PW (−f)

]
(23)

where F−1 is the Inverse Fourier transform.
The problem now reduces to that of finding the optimal g(θ)

to maximize the integrand in (22). Note that this optimal g∗(θ) is
independent of the noise pdf pW (w). Upon obtaining g∗(θ), the
optimal quantizer for a given noise pdf can then be designed using
(23). Therefore, the optimization in (22) can be re-stated as

g∗(·) = arg max
g(·)

∫
θ

I(θ)pΘ(θ)dθ (24)

where I(θ) is given in (20).

Proposition 5.1 Given the prior distribution pΘ(θ), the optimal
g∗(θ) can be found by solving the following differential equation

pΘ(θ)(g′(θ))2(1−2g(θ)) = 2g(θ)(1−g(θ))(g′′(θ)pΘ(θ)+g′(θ)p′Θ(θ))
(25)
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where ’ and ” denote respectively the first and the second derivatives
with respect to θ.

Proof Define K(θ) = I(θ)pΘ(θ) as the function of θ which is the
integrand in (24). The optimization problem presented in (24) is a
typical variational calculus problem and it can be solved using the
Euler-Lagrange equation [13] stated below

∂K

∂g
=

d

dθ

∂K

∂g′
(26)

From the expression of I(θ) given in (20), we have

∂K

∂g
=

(g′)2pΘ(1− 2g)

(g − g2)2
(27)

and
∂K

∂g′
=

2g′pΘ

(g − g2)
(28)

Differentiating (28) with respect to θ and using (26), we get the
desired result. �

As can be seen from (25), the differential equation can be solved
for a given prior pΘ(θ). After finding this optimal g∗(θ), the optimal
quantizer γ∗(x) can be found for a given noise pdf pW (w) using
(23).

5.3. Example: Uniform prior

In this section, we consider a special case of θ being uniformly dis-
tributed and find the optimal g∗(θ).

Proposition 5.2 Given that θ is uniformly distributed in [θmin, θmax],
the solution to the optimization problem in (24), g∗(θ) is given by

g∗(θ) =
1

2

[
1 + sinπ

(
θ − θmin

θmax − θmin
− 1

2

)]
, θ ∈ [θmin, θmax]

(29)

Proof The proposition can be proved either by using (25) or using
the fact that the prior is uniformly distributed and therefore pΘ(θ)
is independent of θ. This simplifies the Euler-Lagrange equation of
(26) to I−g′ ∂I

∂g′ = k, where k is a constant. Using (20) and without
loss of generality, assuming the boundary conditions as g(θmin) = 0
and g(θmax) = 1, we obtain gs(θ) given by (29) as a stationary
point. It can be verified that this stationary point is a maximum as it
satisfies the second order necessary conditions for a maximum given
by Osgood [14] and also observe that g∗(θ) cannot be a minima as
L(g∗) = π2

4
> L(g1) = 0 where L(g(·)) =

∫
θ
I(θ)pΘ(θ) and

g1(θ) = const. Therefore, the optimal g∗(θ) is given by (29).

�

It is interesting to observe that the same result was obtained by
Chen and Varshney [3] using the minimax CRLB as the performance
metric for a distributed estimation problem with deterministic un-
known parameter θ. This result is expected as when the FC has a
non-informative prior (uniform prior), there is no Fisher information
provided by the prior (FP = 0). This implies that using the mini-
max CRLB or PCRLB (which is the average CRLB in the case of
uniform prior) would give the same optimal result.

Without loss of generality, let θmin = −1 and θmax = 1. The
optimal g∗(θ) given in (29) becomes

g∗(θ) =
1

2

[
1 + sin

πθ

2

]
, for θ ∈ [−1, 1] (30)

5.3.1. Noiseless observations

The performance limit of this distributed estimation problem under
the Bayesian criterion can be characterized by observing the perfor-
mance when the observations are noiseless. When these observa-
tions at the local sensors prior to quantization are noiseless, i.e., the
observation model is perfect, pW (w) = δ(w). The optimal quan-
tizer, for this case, is given by the sine quantizer

γ∗(y) =
1

2

[
1 + sin

πy

2

]
, for y ∈ [−1, 1] (31)

In this case, the posterior Fisher information is F = π2

4
and

the PCRLB is 4
π2 . This represents the performance limit under the

Bayesian criteria for the distributed location parameter estimation
problem with uniform prior.

5.3.2. Optimality of Threshold quantizers

Threshold quantizers are the most widely used quantizers due to their
simplicity [15]. A threshold quantizer is given by

γT (y) =

{
1, if y ≥ T
0, otherwise

(32)

An interesting question is to find the conditions on the noise pdf
pW (w) for which the threshold quantizers attain the performance
limit as described in Sec. 5.3.1 which is the performance when the
observations are noiseless (refer to the discussion after (31)). For the
optimality condition to be satisfied, the threshold quantizer and the
noise pdf should satisfy the following constraint

g∗(θ) =

∫
y

γT (y)pW (y − θ)dy (33)

=

∫ ∞
y=T

pW (y − θ)dy = 1− PW (T − θ) (34)

where PW (w) is the cumulative distribution function of noise and
g∗(θ) is given by (31). Differentiating both sides and using the fact
dPW (w)
dw

= pW (w), we get the sufficient condition for the threshold
quantizer γT (y) to achieve performance limit when the noise pdf is

pW (w) =

{
π
4

cos π
2

(w − T ), for w ∈ [T − 1, T + 1]

0, otherwise

Threshold quantizers can still be optimal for a wide range of noise
distributions but the performance limit can be reached only for the
above noise pdf.

6. CONCLUSION

In this work, we have considered the problem of quantizer design for
distributed estimation under the Bayesian criterion. We have found
the optimality conditions for one-bit quantizers and showed that for
conditionally unbiased efficient estimators, identical quantizers are
optimal. For the location parameter estimation problem with a given
prior distribution, we have found the optimal g∗(·) as a solution of
a differential equation. We have also characterized the performance
limit when the prior distribution is uniform and found the sufficient
condition on the noise distribution for which the threshold quantizers
are optimal.
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