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ABSTRACT
We consider least squares estimators of carrier phase and am-
plitude from a noisy communications signal. We focus on
signaling constellations that have symbols evenly distributed
on the complex unit circle, i.e., M -ary phase shift keying.
We show, under reasonably mild conditions on the distribu-
tion of the noise, that the least squares estimator of carrier
phase is strongly consistent and asymptotically normally dis-
tributed. However, the amplitude estimator is not consistent,
but converges to a positive real number that is a function of
the true carrier amplitude, the noise distribution and the size
of the constellation. The results of Monte Carlo simulations
are provided and these corroborate the theoretical results.

Index Terms— Noncoherent detection, phase shift key-
ing, asymptotic statistics

1. INTRODUCTION

In passband communication systems the transmitted signal
typically undergoes time offset (delay), phase shift and atten-
uation. These effects must be compensated for at the receiver.
In this paper we assume that the time offset has been previ-
ously handled, and we focus on estimating the phase shift and
attenuation. We consider signalling constellations that have
symbols evenly distributed on the complex unit circle such as
binary phase shift keying (BPSK), quaternary phase shift key-
ing (QPSK) and M -ary phase shift keying (M -PSK). In this
case, the transmitted symbols take the form,

si = ejui ,

where j =
√
−1 and ui is from the set {0, 2π

M , . . . , 2π(M−1)
M }.

We assume that time offset estimation and matched filter-
ing have been performed and that L noisy M -PSK symbols
are observed by the receiver. The received signal is,

yi = a0si + wi, i = 1, . . . , L, (1)

where wi is noise and a0 = ρ0e
jθ0 is a complex number rep-

resenting both carrier phase θ0 and amplitude ρ0 (by defini-
tion ρ0 is a positive real number). Our aim is to estimate a0
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from y1, . . . , yL. If the transmitted symbols s1, . . . , sL are
known a priori at the receiver then the least squares estimator
is typically used,

âuc = arg min
a∈C

L∑
i=1

|yi − asi|2 =
1

L

L∑
i=1

yis
∗
i , (2)

where C is the set of complex numbers and x∗ and |x| de-
note the conjugate and magnitude of the complex number x.
Viterbi and Viterbi [1] call this the unmodulated carrier esti-
mator. This estimator can be used if the transmitter includes
pilot symbols, known to the receiver, i.e. coherent detection.

In the paper we are interested in noncoherent detection,
where s1, . . . , sL are not known at the receiver, and must also
be estimated. This estimation problem has undergone exten-
sive prior study and is often called multiple symbol differen-
tial detection [1–9]. A practical approach is the least squares
estimator,

â = arg min
a∈C

min
s1,...,sL∈C

L∑
i=1

|yi − asi|2, (3)

where C is the set of symbols from the M -PSK constella-
tion. The least squares estimator is also the maximum likeli-
hood estimator under the assumption that the noise sequence
{wi, i ∈ Z} is white and Gaussian. As we show, the estimator
can work well even when the noise is not Gaussian. Macken-
thun [6] described an algorithm to compute the least squares
estimator â that requires only O(L logL) arithmetic opera-
tions. Sweldens [7] rediscovered Mackenthun’s algorithm in
2001.

In the literature it has been common to assume that the
symbols s1, . . . , sL are of primary interest and the complex
amplitude a0 is a nuisance parameter. The metric of perfor-
mance is correspondingly the symbol error rate, or bit error
rate. While estimating the symbols (or more precisely the
transmitted bits) is ultimately the goal, we take the opposite
point of view here. Our aim is to estimate a0, and we treat the
unknown symbols as nuisance parameters. This is motivated
by the fact that in many modern communication systems the
data symbols are coded. For this reason raw symbol error rate
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is not of interest at this stage. Instead, we desire an accu-
rate estimator â of a0, so that the compensated received sym-
bols â−1yi can be accurately modelled using an additive noise
channel. The additive noise channel is a common assumption
for subsequent receiver operations, such as decoding. The
estimator â is also used in the computation of decoder met-
rics for modern decoders, and for interference cancellation in
multiuser systems. Consequently, our metric of performance
will not be symbol or bit error rate, but |â− a0|2. It will be
informative to consider the carrier phase and amplitude esti-
mators separately, that is, if â = ρ̂ejθ̂ where ρ̂ is a positive
real number, then we consider 〈θ̂ − θ0〉2 and (ρ̂ − ρ0)2. The
function 〈·〉 denotes its argument taken ‘modulo 2π

M ’ into the
interval [−π/M, π/M), that is

〈x〉 = x− 2π
M round

(
M
2πx
)
,

where round(·) takes its argument to the nearest integer. The
direction of rounding for half-integers is not important so long
as it is consistent. We have chosen to round up half-integers
here. It will become apparent why 〈θ̂ − θ0〉2 rather than
(θ̂ − θ0)2 is the appropriate measure of error for the phase
parameter.

The paper is organised in the following way. Section 2
describes properties of complex random variables that we
need. Section 3 describes the statistical properties of the least
squares estimators of carrier phase θ̂ and amplitude ρ̂. We
show, under some assumptions about the distribution of the
noise w1, . . . , wL, that 〈θ̂ − θ0〉 converges almost surely to
zero and that

√
L〈θ̂ − θ0〉 is asymptotically normally dis-

tributed as L → ∞. However, ρ̂ is not a consistent estimator
of the amplitude ρ0. The asymptotic bias of ρ̂ is small when
the signal to noise ratio (SNR) is large, but the asymptotic
bias is significant when the SNR is small. Section 5 presents
the results of Monte-Carlo simulations. These simulations
agree with the derived asymptotic properties.

2. CIRCULARLY SYMMETRIC COMPLEX
RANDOM VARIABLES

Before describing the statistical properties of the least squares
estimator, we first require some properties of complex valued
random variables. A complex random variable W is said to
be circularly symmetric if its phase ∠W is independent of
its magnitude |W | and if the distribution of ∠W is uniform
on [0, 2π). That is, if Z ≥ 0 and Θ ∈ [0, 2π) are real ran-
dom variables such that ZejΘ = X , then Θ is uniformly dis-
tributed on [0, 2π) and is independent of Z. If the probability
density function (pdf) of Z is fZ(z), then the joint pdf of Θ
and Z is fZ,Θ(z, θ) = 1

2πfZ(z). IfX is circularly symmetric,
then for any real number φ, the distribution of X is the same
as that of ejφX .

3. STATISTICAL PROPERTIES OF THE LEAST
SQUARES ESTIMATOR

The next two theorems describe the asymptotic properties of
the least squares estimator. We omit the proofs due to space
constraints. Proofs will be provided in a forthcomming paper.

Theorem 1. (Almost sure convergence) Let {wi} be a se-
quence of independent and identically distributed, circularly
symmetric complex random variables with w1 having finite
variance and continuous pdf. Let y1, . . . , yL be given by (1)
and let â = ρ̂ejθ̂ be the least squares estimator of a0 =
ρ0e

jθ0 given by (3). Let Ri ≥ 0 and Φi ∈ [0, 2π) be real
random variables satisfying

Rie
jΦi = 1 +

wi
a0si

,

and define the continuous function

G(x) = ER1 cos〈x+ Φ1〉.

If G(x) is uniquely maximised at x = 0 over the interval
[− π

M , πM ), then:

1. 〈θ̂ − θ0〉 → 0 almost surely as L→∞,
2. ρ̂→ ρ0G(0) almost surely as L→∞.

Theorem 2. (Asymptotic normality) Under the same condi-
tions as Theorem 1, let f(r, φ) be the joint pdf of R1 and Φ1,
and let

g(φ) =

∫ ∞
0

rf(r, φ)dr.

Put λ̂L = 〈θ̂ − θ0〉 and m̂L = ρ̂ − ρ0G(0). Then the distri-
bution of (

√
Lλ̂L,

√
Lm̂L) converges to the bivariate normal

with zero mean and covariance matrix(
H−2A 0

0 ρ2
0B

)
as L→∞, where

H = G(0)− 2 sin( πM )

M−1∑
k=0

g( 2π
M k + π

M ),

A = ER2
1 sin2 〈Φ1〉 , B = ER2

1 cos2 〈Φ1〉 −G2(0).

We now discuss the assumptions made by these theorems.
The assumption that w1, . . . wL are circularly symmetric can
be relaxed, but this comes at the expense of making the the-
orem statements more complicated. If wi is not circularly
symmetric then the distribution of Ri and Φi may depend on
a0 and also on the transmitted symbols s1, . . . , sL. In result,
the asymptotic variance described in Theorem 2 depends on
a0 and s1, . . . , sL, rather than just ρ0. The circularly sym-
metric assumption may not always hold in practice, but we
feel it provides a sensible trade off between simplicity and
generality.
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A key assumption in Theorem 1 is that G(x) is uniquely
maximised at x = 0 for x ∈ [− π

M , πM ). Although we will
not prove it here, this assumption is not only sufficient, but
also necessary, for if G(x) is uniquely maximised at some
x 6= 0 then 〈θ̂ − θ0〉π → x almost surely as L → ∞, while
if G(x) is not uniquely maximised then 〈θ̂ − θ0〉π will not
converge. One can check that the assumption holds when w1

is circularly symmetric and normally distributed.
The theorems make statements about 〈θ̂− θ0〉 rather than

directly on θ̂−θ0. This makes practical sense, and to see why
let s′i = ej2πk/Msi be M -PSK symbols obtained by rotating
s1, . . . , sL by ej2πk/M for some integer k. Then

asi = ρejθsi = ρej(θ−2πk/M)s′i,

and so, if a = ρ̂ejθ̂ minimises (3), then so does ρ̂ej(θ̂−2πk/M).
Thus, θ̂ − θ0 should be attributed the same error as θ̂ − θ0 −
2π
M k. That is, the error should be computed ‘modulo 2π

M ’. It
is for this reason that differential encoding is often used with
noncoherent M -PSK detectors.

4. THE GAUSSIAN NOISE CASE

Let the noise sequence {wi} be complex Gaussian with inde-
pendent real and imaginary parts having zero mean and vari-
ance σ2. The joint density function of the real and imaginary
parts is

1

2πσ2
e−

1
2σ2

(x2+y2).

Theorem 1 and 2 hold, and since the distribution of w1 is
circularly symmetric, the distribution of R1e

jΦ1 is identical
to the distribution of 1 + 1

ρ0
w1. It can be shown that

g(φ) =
cos(φ)

2π
e−

1
2κ

2

+
Ψ(φ)

κ
√

2π
e−

1
2κ

2 sin2(φ)
(
1+κ2 cos2(φ)

)
where κ = ρ0/σ and

Ψ(φ) =
1

2
+

1

2
erf

(
κ cos(φ)√

2

)
and erf(x) = 2√

π

∫ x
0
e−t

2

dt is the error function. The value
ofA andB can be efficiently computed by numerical integra-
tion using these formula.

5. SIMULATIONS

We present the results of Monte-Carlo simulations with
the least squares estimator. In all simulations the noise
w1, . . . , wL is independent and identically distributed cir-
cularly symmetric and Gaussian with real and imaginary
parts having variance σ2. Simulations are run with M = 2, 4
(BPSK and QPSK) and L = 16, 256, 4096 with signal to
noise ratio SNR =

ρ20
2σ2 between -20 dB and 20 dB in steps of

1 dB. The amplitude ρ0 = 1 and θ0 is uniformly distributed
on [−π, π). For each value of signal to noise ratio T = 10000

replications are performed to obtain T estimates ρ̂1, . . . , ρ̂T
and θ̂1, . . . , θ̂T .

Figures 1 and 2 show the sample mean square error (MSE)
of the phase estimator θ̂ computed as 1

T

∑T
i=1〈θ̂i− θ0〉2. The

dots show the sample MSE of the least square estimator. The
dashed line is the sample MSE of the unmodulated carrier
estimator (2) that has a priori knowledge of the transmitted
symbols s1, . . . , sL. The solid line is the MSE predicted by
Theorem 2. The theorem accurately predicts the behaviour
of the phase estimator when L is sufficiently large and when
the SNR is not too small. As the SNR decreases the vari-
ance of the phase estimator approaches that of the uniform
distribution on [− π

M , πM ) and Theorem 2 does not model this
behaviour.

Figures 1 and 2 also display the sample MSE of the phase
estimator of Viterbi and Viterbi [1]. This estimator requires
the selection of a function F that transforms the amplitude
of each sample prior to the final estimation step. They pro-
pose several viable alternatives, from which we have chosen
F (x) = 1. The sample MSE of the least squares estima-
tor and the Viterbi and Viterbi estimator is similar. The least
squares estimator appears slightly more accurate at low SNR.

Figures 3 and 4 show the variance of the amplitude esti-
mator ρ̂. The solid line is the asymptotic variance predicted by
Theorem 2, the dots are the Monte-Carlo simulations with the
least squares estimator, and the dashed line the simulations
with the unmodulated carrier estimator. For the least squares
estimator each point is computed as 1

T

∑T
i=1

(
ρ̂i−ρ0G(0)

)2
.

This requires G(0) to be known. In practice G(0) may not be
known at the receiver, so Figures 3 and 4 serve to validate the
correctness of our asymptotic theory, rather than to suggest
the practical performance of the amplitude estimator. When
SNR is large G(0) is close to 1 and the bias of the amplitude
estimator is small. However, G(0) grows without bound as
the variance of the noise increases, so the bias is significant
when SNR is small. As indicated in Figures 3 and 4 the vari-
ance of the least squares amplitude estimator is smaller than
that of the unmodulated carrier. However, due to the bias, the
MSE of the least squares amplitude estimator is not smaller
than that of the unmodulated carrier.

6. CONCLUSION

We have studied the least squares estimator of carrier phase
and amplitude from the observation of L noisy M -PSK sym-
bols. The estimator can be computed in O(L logL) opera-
tions using the algorithm of Mackenthun [6], and is the maxi-
mum likelihood estimator in the case that the noise is additive
white and Gaussian. We showed that the phase estimator θ̂ is
strongly consistent and asymptotically normally distributed.
However, the amplitude estimator ρ̂ is biased, and converges
to G(0)ρ0. This bias is large when the signal to noise ratio
is small. It would be interesting to investigate methods for
correcting this bias.
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Fig. 1. Phase mean square error for BPSK
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Fig. 2. Phase mean square error for QPSK
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Fig. 3. Amplitude variance for BPSK
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Fig. 4. Amplitude variance for QPSK
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