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ABSTRACT

The aim of this work is to jointly achieve individual rate re-
quirements and minimum total transmit power in the vector
Broadcast Channel (BC). Data streams are transmitted from a
multi-antenna base station to several non-cooperative single-
antenna receivers having perfect Channel-State-Information
(CSI). Partial CSI, e.g., obtained via feedback, is used for the
design of linear transmit filters at the transmitter. Employing
a duality between Multiple Access Channel (MAC) and BC
rate regions and the so-called standard interference functions,
we propose an algorithmic joint solution for the transmit filter
design and the power allocation in this work.

1. INTRODUCTION

We consider the design of linear precoders in the vector BC
assuming erroneous CSI at the transmitter but perfect CSI at
the receivers. Based on the appropriate duality between the
MAC and the BC, the BC problem can be reformulated in the
dual MAC. Due to the assumption of erroneous CSI, however,
the dualities presented in [1–6] cannot be applied. Instead,
we have to resort to the duality shown in [7] allowing for a
different level of CSI at the transmitter and the receivers. Ad-
ditionally, we note that we do not apply the standard assump-
tion that the CSI errors at the transmitter and the receivers are
identical as done in [8] (see also the references given in [7]).

In [9–12], the precoder design was based on a model with
bounded errors that is well suited for systems with feedback.
For a stochastic error model, the average sum Mean Square
Error (MSE) was minimized in [7, 8]. The precoder design
under probabilistic constraints was considered in [13–15].

We employ a stochastic error model, e.g., resulting from
estimation in the reverse link or feedback, and a formulation
based on ergodic rates as in [16] where bounds to the achiev-
able rates for linear zero-forcing precoders based on imperfect
CSI were presented. However, as the optimization of a non-
zero-forcing linear precoder based on the ergodic rates is dif-
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ficult for partial CSI, we concentrate on lower bounds to the
ergodic rates depending on the average MSE (see Section 3).

The minimization of the total transmit power under aver-
age per-user MSE constraints is considered. For perfect trans-
mitter CSI, the joint power allocation and transceiver opti-
mization for the MMSE balancing problem was solved in [17]
by means of a standard interference function [18, 19]. How-
ever, assuming perfect transmitter CSI is unrealistic.

Our contribution is an algorithmic solution of the power
minimization problem under the assumption of imperfect
transmitter CSI exploiting the duality result of [7]. In particu-
lar, we highlight the possibility to use a standard interference
function based on the MMSE resulting from applying scalar
equalizers in the vector MAC leading to a low complexity of
the fixed-point iteration to compute the power allocation.

2. SYSTEM MODEL

The upper subfigure of Fig. 1 depicts the BC model. The
zero-mean data signal sk ∈ C for user k, with 1 ≤ k ≤ K
and E[|sk|2] = 1, is precoded by pk ∈ C

N , where K and N
are the number of users and transmit antennas, respectively.
The transmit signal propagates over the vector channel hk ∈
C

N and the additive Gaussian noise is ηk ∼ NC(0, σ
2
k). The

estimate at the output of the scalar receiver fk ∈ C reads as

ŝk = fkh
H
k

∑K
i=1 pisi + fkηk. (1)

The data signals are mutually independent and also indepen-
dent of the noise signals.

We assume that the transmitter does not perfectly know
the CSI but has some partial CSI v and the parameters of the
PDFs fhk|v (hk|v) for all k are available. Contrarily, the re-
ceivers can employ the known full CSI. Thus, any meaningful
equalizers are functions of the channel state (see [7]), e.g.,

fk,MMSE = argminfk E
[

|sk − ŝk|2
∣

∣

∣
hk

]

. (2)

To highlight the dependence of the equalizers on the channel
state, we use the notation fk(hk) in the following.
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Fig. 1. Downlink and dual uplink

The transmitter, however, only has the partial CSI v.
Therefore, the precoder design is based on the average MSE

MSEBC
k = E

[

|sk − ŝk|2
∣

∣

∣
v
]

= E
[

1− 2ℜ
{

fk(hk)h
H
k pk

}

+
∑K

i=1

∣

∣fk(hk)h
H
k pi

∣

∣

2
+ σ2

k |fk(hk)|2
∣

∣

∣
v
]

. (3)

The lower subfigure of Fig. 1 shows the MAC model. The kth
precoder is tk(hk) ∈ C. The transmit signal propagates over
the channel σ−1

k hk ∈ C
N . The received signal is perturbed

by η ∼ NC(0, I) and filtered with the equalizer gk ∈ C
N to

get the estimated symbol of user k, i.e., ŝMAC
k = gH

k x with
x =

∑K
i=1 σ

−1
i hiti(hi)si+η. Note that the MAC equalizers

gk depend on the partial CSI v whereas the MAC precoders
tk(hk) are functions of the current channel state. Accordingly,

MSEMAC
k = E

[

1− 2ℜ
{

σ−1
k gH

k hktk(hk)
}

(4)

+
∑K

i=1 σ
−2
i

∣

∣gH
k hiti(hi)

∣

∣

2
+ ‖gk‖22

∣

∣

∣
v
]

is the average MSE E[|sk − ŝMAC
k |2 | v] in the MAC channel.

2.1. BC/MAC MSE Duality

We define the relationship between BC and MAC filters as [7]

pk = αkgk and fk(hk) = σ−1
k α−1

k t∗k(hk) (5)

with αk ∈ R
+ and rewrite MSEBC

k accordingly [cf. (3)], i.e.,

MSEBC
k = E

[

1− 2ℜ
{

σ−1
k t∗k(hk)h

H
k gk

}

+ α−2
k |tk(hk)|2

+
∑K

i=1
α2

i

α2

k

σ−2
k

∣

∣gH
i hktk(hk)

∣

∣

2
∣

∣

∣
v
]

.

By equating the last expression to (4), we get Γa = ς , where
a = [α2

1, . . . , α
2
K ]T and with ςi = E[|ti(hi)|2 | v] ∈ R

+
0 , we

have ς = [ς1, . . . , ςK ]T. The entries of Γ ∈ R
K×K are

γk,j =

{

∑

i6=k σ
−2
i E[|gH

k hiti(hi)|2 | v] + ‖gk‖22 j = k

−σ−2
k E[|gH

j hktk(hk)|2 | v] j 6= k.

Since Γ is diagonally dominant, Γ−1 exists. As Γ has posi-
tive diagonal and non-positive off-diagonal entries, Γ−1 has
non-negative entries [5, 20] and the resulting α2

k are non-
negative. Thus, αk ∈ R

+ can always be found such that

MSEBC
k = MSEMAC

k , ∀k. Left multiplying Γa = ς by the all-
ones vector 1T yields

∑K
i=1 ‖gi‖22α2

i =
∑K

i=1 E[|ti(hi)|2 | v].
Due to (5), we can infer that the same average transmit power
is used in the BC as in the dual MAC.

The proof for the converse transform is analogous. For
given BC filters, MAC filters achieving the same average
MSEs with the same transmit power can be found [7].

3. PROBLEM FORMULATION

Due to Jensen’s inequality and the concavity of log2 (•), we
have log2(E[x]) ≥ E[log2(x)]. Since the instantaneous data
rate can be expressed as R = − log2(MMSE), we have that
E[R] = E[− log2(MMSE)] ≥ − log2 (E[MMSE]). In other
words, when ensuring an average MMSE, a minimum average
rate is guaranteed, i.e., E[Rk | v] ≥ − log2 (εk) follows from

MMSEBC
k ≤ εk. To illustrate the quality of the lower bound,

let the MMSE be beta distributed, i.e., MMSE ∼ β(a, b).
Then, − log2(E[MMSE]) = log2(1 +

b
a
) and for positive in-

teger a, b, it can be shown that E[R] ≈ log2(1 +
b

a−1 ).
Our goal is to ensure minimum average rates. Based on

above discussion, we circumvent the difficult optimization of
the average rates and concentrate on the average MSE instead.
We minimize the total transmit power under Quality of Ser-
vice (QoS) constraints expressed as maximum MSEs εk, i.e.,

min
{fk(hk),pk}K

k=1

∑K
i=1 ‖pi‖2 s.t.: ∀k: MSEBC

k ≤ εk (6)

where the precoders pk only depend on the partial CSI v.
Note that this formulation ensures E[Rk | v] ≥ − log2(εk), ∀k.
Moreover, the BC optimization (6) has the advantage that the
computation of the equalizers is simple. From (2), we find

fk,MMSE(hk) =
(

σ2
k +

∑K
i=1

∣

∣hH
k pi

∣

∣

2
)−1

pH
k hk. (7)

For the computation of the optimal precoders, however, a re-
formulation in the dual MAC is necessary, that is,

min
{tk(hk), gk}K

k=1

Ptx,MAC s.t.: ∀k: MSEMAC
k ≤ εk (8)

with Ptx,MAC =
∑K

i=1 E[|ti(hi)|2 | v]. The reformulation (8)
leads to following optimal MAC equalizers (BC precoders)

gk,MMSE = (R+ I)
−1

µk (9)

where we introduced R =
∑K

i=1 σ
−2
i E[hi|ti(hi)|2hH

i | v]
and µk = σ−1

k E[hktk(hk) | v]. The two formulations (6)
and (8) allow for a simple computation of the optimal equal-
izers but finding the precoders fulfilling the QoS constraints
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is difficult. Therefore, we propose to employ an Alternating
Optimization (AO). The BC equalizers are found via (7) for
given precoders pk but the BC precoders including the power
allocation are computed in the dual MAC for given fk(hk).

4. MAC SOLUTION FOR GIVEN BC EQUALIZERS

As can be seen in (9), it is necessary to compute the expec-
tations R and µi for i = 1, . . . ,K. We propose to per-
form the numerical integration by the Monte Carlo method.
The M realizations resulting from the PDF fhk|v(hk|v) are

collected in Hk = σ−1
k [h

(1)
k , . . . ,h

(M)
k ]. Likewise, tk =

[tk(h
(1)
k ), . . . , tk(h

(M)
k )]T comprises the corresponding MAC

precoders. In the AO procedure, the direction of tk, i.e., the
dependence of the BC equalizers on the channel state, is left
unchanged in the MAC step. However, the power allocation
is updated in the MAC to fulfill the QoS constraints. To this
end, we split off the power allocation ξk = ‖tk‖22/M , i.e.,
tk =

√
ξkτk with ‖τk‖22 = M . For notational brevity, we use

Tk = diag(τ1, . . . , τM ) such that τk = Tk1 with the all-ones
vector 1. Accordingly, the MAC MSE reads as [cf. (4)]

MSEMAC
k = 1− 2M−1

√

ξkℜ{gH
k HkTk1} (10)

+ 1
M

∑K
i=1 ξig

H
k HiTiT

H
i HH

i gk + ‖gk‖22.

The optimal equalizers gk,MMSE still have the form of (9) but
R = 1

M

∑K
i=1 ξiHiTiT

H
i HH

i and µk = 1
M

√
ξkHkTk1.

Next, the MAC power allocation ξ = [ξ1, . . . , ξK ]T is found.

4.1. Power Allocation via Interference Function

We discuss two interference functions. For the first and obvi-
ous one, gk,MMSE is implicitly applied. The computationally
advantageous second one keeps the direction of gk constant.

A) Matrix-Inversion Interference Function: Suppose
that the optimal equalizers gk,MMSE [see (9)] are used. After
applying the matrix inversion lemma, the resulting minimum
MSE can be written as [cf. (10)]

MMSEMAC
k =

1

ξk
1
T

(

M

ξk
I+ TH

k HH
k X−1

k HkTk

)−1

1

with Xk = 1
M

∑

i6=k ξiHiTiT
H
i HH

i + I. Interpreting the
term Ik(ξ) = 1

T(M
ξk

I+TH
k HH

k X−1
k HkTk)

−1
1 as interfer-

ence, we have that MMSEMAC
k = Ik(ξ)/ξk. The MAC QoS

problem reduces to [cf. (8)]

minξ≥0 1
Tξ s.t.: ∀k: ε−1

k Ik(ξ) ≤ ξk. (11)

It can easily be shown that I(ξ) = [I1(ξ), . . . , IK(ξ)]T is
a standard interference function [18], i.e., we have positivity
(I(ξ) > 0), monotonicity (I(ξ) ≥ I(ξ′) for ξ ≥ ξ′), and
scalability (zI(ξ) > I(zξ) for all z > 1). The inherent opti-
mization w.r.t. the MAC equalizers gk when employing I(ξ)

is possible due to [18, Theorem 5] (see also [21]). Since I(ξ)
is standard, the fixed point iteration ξ(ℓ) = E−1I(ξ(ℓ−1))
with E = diag(ε1, . . . , εK) converges to the global opti-
mum of the power minimization (11) and delivers the op-
timum power allocation ξopt and MAC equalizers gopt,k for
given MAC beamformers Tk, k ∈ {1, . . . ,K} (see [21]).

B) Scalar-Inversion Interference Function: To save
computational complexity by avoiding the 2K inversions
in the definition of I(ξ), the MAC equalizers gk resulting
from the BC-to-MAC transform are kept fixed. To allow for
an adaptation of the equalizers, additional scalar equalizers
rk are introduced. Replacing gk by rkgk in (10) leads to

MSEMAC
k = 1− 2M−1ℜ

{

r∗kg
H
k HkTk1

√

ξk

}

(12)

+
1

M
|rk|2

∑K
i=1 ξig

H
k HiTiT

H
i HH

i gk + |rk|2 ‖gk‖22 .

The k-th MMSE optimal scalar receiver is given by

rk,MMSE =
1
M
gH
k HkTk1

√
ξk

1
M

∑K
i=1 ξig

H
k HiTiT

H
i HH

i gk + ‖gk‖22
. (13)

Substituting rk,MMSE in (12) gives MMSEMAC
k,scalar. With

yk(ξ) =
1

M

K
∑

i=1

ξig
H
k HiTiT

H
i HH

i gk −
ξk
M2

∣

∣gH
k HkTk1

∣

∣

2

and xk(ξ) = ‖gk‖22 + yk(ξ), the minimum MSE reads as

MMSEMAC
k,scalar =

1

ξk

(

1

ξk
+

∣

∣gH
k HkTk1

∣

∣

2

M2xk(ξ)

)−1

. (14)

For diagonal D, aHD2a− 1
M
|aHD1|2 = aHDΠDa > 0

with the projector Π = I − 1
M
11

T. Thus, xk(ξ) > 0. The
QoS power allocation problem can be written as [cf. (8)]

minξ≥0 1
Tξ s.t.: ∀k: ε−1

k Jk(ξ) ≤ ξk. (15)

For MMSEMAC
k,scalar =

Jk(ξ)
ξk

, the interference of user k is set to

Jk(ξ) =

(

1

ξk
+

1

M2

1

xk(ξ)

∣

∣gH
k HkTk1

∣

∣

2
)−1

. (16)

Collecting the interferences in J(ξ) = [J1(ξ), . . . , JK(ξ)]T

gives a standard interference function. Positivity of J(ξ)
follows from ξ ≥ 0 and xk > 0. Monotonicity can
be seen from the property of xk to be monotonically in-
creasing in ξ. Finally, we have zxk(ξ) > xk(zξ) for
z > 1 and thus, zJk(ξ) > Jk(zξ) manifesting scalabil-
ity. As J(ξ) is a standard interference function, the iteration
ξ(ℓ) = E−1J(ξ(ℓ−1)) with E = diag(ε1, . . . , εK) converges
to the global optimum of (15), i.e., ξopt and ropt,k for given gk
and Tk with k ∈ {1, . . . ,K}. Comparing the expression (16)
for Jk(ξ) to that of Ik(ξ) illustrates the simplicity of Jk(ξ).
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Algorithm 1 Power Minimization

1: l← 0, random init.: p(0)
k and h

(m)
k ∼ fhk|v(hk|v), ∀k,m

2: repeat
3: l← l + 1 , execute commands for all k ∈ {1, . . . ,K}
4: for m = 1 to M do
5: f

(l,m)
k ←(

∑K
i=1 |h

(m),H
k p

(l−1)
i |2+σ2

k)
−1p

(l−1),H
k h

(m)
k

6: end for
7: t

(l)
k ← BC-to-MAC conversion (see Section 2.1)

8: ξ
(l+1)
k ← 1

εk
Jk(ξ

(l))

9: t
(l+1)
k ← τ

(l)
k

√

ξ
(l+1)
k

10: g
(l+1)
k ← update MAC receiver using (9)

11: p
(l+1)
k ←MAC to BC conversion (see Section 2.1)

12: until
∣

∣ξ(l+1) − ξ(l)
∣

∣ ≤ δ

Note that the matrix vector products necessary in (16) have
already been computed during the BC-to-MAC transform.
Hence, only simple scalar operations have to be performed.
For Ik(ξ), however, two matrix inversions per user have to be
computed per step of the fixed point iteration.

4.2. Equivalence of Interference Functions

From (9), we have gk,MMSE = (R + I)−1µk for the opti-
mal MAC equalizers with R = 1

M

∑K
i=1 ξiHiTiT

H
i HH

i and
µk = 1

M

√
ξkHkTk1. Substituting gk,MMSE in xk(ξ) gives

xk(ξ) = µH
k (R+ I)−1µk −

(

µH
k (R+ I)−1µk

)2
.

The MMSE with scalar equalizer rk,MMSE can therefore be
rewritten as [cf. (14)]

MMSEMAC
k,scalar = 1− 1

M2
ξkµ

H
k (R+ I)−1µk.

Applying the matrix inversion lemma leads to the conclusion

that MMSEMAC
k,scalar = MMSEMAC

k if gk = gk,MMSE. Thus, the
two interference functions lead to the same power allocation
in each step if the equalizers are updated in every step of the
fixed point iteration with the scalar interference function.

5. ALGORITHMIC SOLUTION

The pseudocode in Algorithm 1 solves the power minimiza-
tion problem (6). In every loop, the BC equalizers are updated
in line 5. After the BC-to-MAC transform, the MAC power
allocation is recomputed based on the interference function
J(ξ) [see (16)] in line 8. The MAC equalizers are updated
in line 10. Due to the MAC-to-BC transform in line 11, this
corresponds to an update of the BC precoders. Note that Al-
gorithm 1 is performed at the BC transmitter based on the
partial CSI. No computations are necessary at the receivers.

Every step of Algorithm 1 either reduces the transmit
power or the average MSEs (without changing the transmit
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Fig. 2. Example of algorithm execution.

power). Due to the existence of a unique minimum of (6),
this property implies that the power converges. Note that
the precoders and equalizers are not unique, e.g., weighting
pk with exp(jϕ) and tk(hk) with exp(− jϕ) does neither
influence the power nor the average MSEs. Nevertheless, we
observed that also the filters always converge.

6. SIMULATIONS

We present the results of a simulation for N = 4 transmit
antennas and K = 4 users, considering σ2

k = 1, ∀k. The
upper subfigure of Fig. 2 shows the average rates vs. the num-
ber of iterations, while the lower subfigure shows the total
transmit power vs. the number of iterations. The threshold
δ is set to 10−4 and the result is the mean of 4000 channel
realizations. The partial CSI v is translated into the channel
first and second order moments, i.e., ∀k : E[hk|v] = uk with
uk,l = ej(l−1)ϕk and ϕk ∼ U(0, 2π), and ∀k : Chk|v = IN ,
respectively. The average MMSE targets are εk = 0.6, ∀k.
That is, E[Rk] ≥ − log2 (0.6) = 0.7370, ∀k. As we can see
in Fig. 2, these rate targets are met in a very good approxi-
mation after convergence although the algorithm is based on
a lower bound of the average rates.

7. CONCLUSIONS

We proposed an algorithm for the power minimization in the
vector BC under minimum ergodic rate constraints via im-
posing conservative average MSE constraints. Using the aver-
age MSE BC/MAC duality, the equalizer filters are updated in
each iteration and the transmit power is minimized by means
of standard interference functions. As the problem formula-
tion is meaningless for infeasible targets, the characterization
of the feasible region is a possible future work.
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