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ABSTRACT

In this paper, we study the linear transceiver design for the downlink
of a cellular network assisted by a multi-antenna relay. A diagonal
scaling scheme is proposed in which multiple single-antenna users
apply different complex-valued scaling to their signals before decod-
ing, as represented by an equivalent diagonal equalizer matrix. This
equalizer is designed together with a linear precoder at the base sta-
tion (BS) and a linear processing matrix at the relay. The objective is
to minimize the weighted minimum mean square error (MMSE) be-
tween the precoder input and the equalizer output, subject to power
constraints at the BS and the relay. In particular, the optimal relay-
ing matrix is first derived in closed form as a function of the precoder
and the equalizer. The latter two can then be jointly designed in an
efficient iterative manner. Simulation results demonstrate lower bit-
error rates (BERs) than previous design methods.

Index Terms— Broadcast channel, wireless relaying, transceiver
design, weighted MMSE, diagonal scaling

1. INTRODUCTION AND RELATION TO PRIOR WORK

The use of relays to assist communications within cellular networks
has attracted interests in both academic and industrial worlds [1]. For
relay stations equipped with multiple antennas, the simplest and per-
haps also the most practical relaying strategy is half-duplex amplify-
and-forward (AF). In this scheme, the source-to-relay and relay-to-
destination transmissions occur in orthogonal degrees of freedoms
(time slots or frequency bins), and the relay applies linear process-
ing to its received signals before retransmitting them. For single-user
one-source–one-relay–one-destination (1S-1R-1D) systems, the op-
timal relay processing takes the form of singular value decomposi-
tion (SVD) under a wide variety of criteria [2]. This can be extended
to the multiple access channels (MAC) without difficulty [3].

This SVD-based relaying framework, however, cannot be read-
ily generalized to relay-assisted broadcast channels (BC), i.e., down-
link transmissions of cellular systems. This is because the mobile
users are not collocated and hence cannot jointly process their re-
ceived signals. In general, the problems of transceiver design for
relay-assisted BC fall into two categories: minimizing the weighted
sum power of the base station (BS) and the relay subject to qual-
ity of service (QoS) constraints [4], or optimizing a selected perfor-
mance criterion such as the sum rate or mean square error (MSE)
subject to power constraints [5–11]. The maximum sum-rate de-
sign was studied in [5] with special structures, such as zero forc-
ing (ZF), dirty paper coding (DPC) and QR transceiver, and in [8]
using quadratic programming. The minimum mean square error
(MMSE) design was considered in [6] with single-antenna users, and
in [7,9,11] with multi-antenna users. The latter case usually requires
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Fig. 1. A relay-assisted broadcast channel (downlink) with single-
antenna users.

complicated algorithms that iterate through the precoder, the relay-
ing matrix and every equalizers multiple times. Consequently, treat-
ing multi-antenna users as multiple single-antenna users, although
suboptimal, simplifies the transceiver design significantly.

With this in mind, we study in this paper the relay-assisted BC
with single-antenna users as shown in Fig. 1. In particular, we con-
sider the joint design of a linear precoder at the BS, a linear process-
ing matrix at the relay, and an equalizer for the destination users. The
equalizer matrix employs a diagonal scaling scheme which provides
more flexibility by allowing different users to apply their own am-
plitude scaling and phase rotation before decoding, in contrast to [6]
which assumes the same scaling for these users. The objective here
is to minimize the weighted MSE between the equalizer output and
the source input, subject to power constraints at the BS and the relay.
Specifically, we first derive the optimal relaying matrix as a function
of the precoder and the equalizer. As a consequence, the latter two
can then be jointly designed in an iterative manner. As a special case,
our approach provides a closed form for the optimal solution when
the users apply the same scaling, whereas only an iterative approach
was used in [6]. Furthermore, simulation results demonstrate lower
bit-error rate (BER) with the proposed diagonal scaling scheme than
previous methods such as [6].

In Sec. 2, we present the system model and formulate the opti-
mization problem, which is then solved step by step in Sec. 3. The
numerical results are shown in Sec. 4, followed by conclusion in
Sec. 5. Notations: superscripts ∗, T and H denote conjugate, trans-
pose and Hermitian transpose, respectively; ‖·‖ stands for the Eu-
clidean norm; E(·) takes expectation; C denotes the complex field.

2. SYSTEM MODEL AND PROBLEM FORMULATION

In the downlink of a cellular system as shown in Fig. 1, the multi-
antenna BS is sending multiple symbol streams simultaneously
to their intended single-antenna users, through the aid of a multi-
antenna relay. This system operates in a two-hop half-duplex mode:
in the first hop, the BS transmits signals to the relay through the
backward channel; in the second hop, the relay forwards these sig-
nals to the users via the forward channel. The relay applies a linear
transformation to its received signals before retransmitting. The
direct links between the BS and the users are neglected due to high
levels of attenuation. The numbers of antennas at the BS and the
relay are respectively NS and NR. The number of users is ND .

We consider a discrete-time complex baseband-equivalent sig-
nal model as shown in Fig. 2. The input symbol vector b ∈ CND×1,

4844978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



EqualizerRelay ChannelPrecoder Channelb
B

s

w

F G

n

Q+H +x y r
r̂

Fig. 2. The system and signal model

with zero mean and covariance Rb = IND , consists of ND statis-
tically independent symbols to be transmitted to the corresponding
users. At the BS, this vector is preprocessed by a linear precoder
matrix B ∈ CNS×ND to generate the transmitted signal vector

s = Bb. (1)

The backward channel between the BS and the relay is represented
by matrix H ∈ CNR×NS . The signal vector x ∈ CNR×1 received
at the relay is therefore

x = Hs + w, (2)

where w ∈ CNR×1 is an additive, zero-mean, circularly symmetric
complex Gaussian noise with covariance Rw.

In this baseband-equivalent model, the linear processing at the
relay is represented by a matrix F ∈ CNR×NR . That is, the relay
retransmits its received noisy signal x as in

y = Fx. (3)

The signal received by the kth single-antenna user is

rk = gTk y + nk = gTk FHBb + gTk Fw + nk, (4)

in which gk ∈ CNR×1 denotes the channel vector from the relay to
the kth user and the scalar nk is the receiver noise. These received
signals can be stacked into a single vector

r , [r1, . . . , rND ]T = GFHs + GFw + n, (5)

where G , [g1, . . . ,gND ]T is the compounded forward channel
matrix from the relay to the destination users. The noise term, n ,
[n1, . . . , nND ]T , is independent from b and w, and modeled as a
circularly symmetric complex Gaussian random vector with zero
mean and covariance Rn.

Considering the possible difference in pathloss experienced by
different users, we propose a diagonal scaling scheme in which each
destination user scales its signal rk by its own complex factor qk
before decoding, as represented by a diagonal compound equalizer
matrix Q , diag(q1, . . . , qND ). This is in contrast with previous
works such as [6] that considered the same scaling for different users.
The output of the equalizer Q is

r̂ = Qr = QGFHBb + QGFw + Qn. (6)

We consider the problem of optimizing the relaying matrix F,
together with the source precoder B and the diagonal equalizer Q.
The optimality criterion is chosen as the weighted MSE between the
precoder input and the equalizer output

MSE(F,B,Q) , E
{
(r̂− b)HW(r̂− b)

}
, (7)

in which the diagonal weight matrix W provides different priority
to different users. Our purpose is to minimize the above weighted
MSE subject to the following two power constraints simultaneously.
One is the expected transmit power of the BS

E
{
‖s‖22

}
= tr(Rs) = tr(BBH) ≤ PS (8)

and the other is the expected transmit power of the relay

E
{
‖y‖22

}
= tr(Ry) = tr(FRxF

H) ≤ PR, (9)

where Rx = HBBHHH + Rw. We assume the availability of
perfect channel state information (CSI), i.e., the channel matrices
and the covariance matrices are known.

3. OPTIMAL TRANSCEIVER DESIGN

We take a step-by-step approach to design the optimal combination
of the relaying matrix F, the precoder B and the diagonal equal-
izer Q. The first step is to derive the optimal Fo as a closed-form
function of B and Q, thereby removing the constraint (9) from the
problem. After substituting this Fo into the objective function, the
problem is reduced to the joint design of B and Q subject to the con-
straint in (8). As it will be shown in Sec. 3.2 and 3.3, it is straight-
forward to design either one of B and Q while treating the other as
a constant matrix. The joint design will be discussed in Sec. 3.4.

3.1. Optimal Design of the Relaying Matrix

We start by designing the relaying matrix F as a function of the pre-
coder B and the equalizer Q. The constraint in (8) does not depend
on F and henceforth need not to be considered for now. Based on
the Lagrangian duality and the Karush-Kuhn-Tucker (KKT) condi-
tions [12], the optimal relaying matrix can be derived as

Fo = (GHQHWQG + λ?I)−1GHQHWBHHHR−1
x . (10)

However, the duality parameter λ? has no closed form and must be
obtained by solving a nonlinear equation. Our approach to circum-
vent this difficulty is to introduce a linear scaling η > 0 in the equal-
izer. If we replace any given Q with a scaled version η−1Q, the
duality parameter λ?, the optimal relaying matrix Fo and the corre-
sponding minimum MSE are all functions of η. It turns out that for
the optimal ηo leading to the smallest MSE, these quantities can all
be expressed in closed forms, as presented in the following theorem:

Theorem 1 For any equalizer Q, there exists a scaled version
η−1
o Q so that:

(a) The optimal relaying matrix is in the closed form

Fo = ηo(G
HQHWQG + θI)−1GHQHWBHHHR−1

x ,
(11)

where θ , tr(WQRnQH)/PR and ηo > 0 satisfies
tr(FoRxF

H
o ) = PR.

(b) The minimum weighted MSE with F = Fo takes the form

MSE(Q,B) = tr(W)− tr
(
BHHHR−1

x HB

WQG (GHQHWQG + θI)−1GHQHWH). (12)

(c) Any other choice of η−1Q together with the corresponding
Fo in (10) would lead to an MSE no smaller than (12). In
addition, (11) and (12) are invariant to linear scaling of Q.

Proof The proof is omitted due to space limitations.

In the sequel, we suppose that the optimal Fo and ηo in Theo-
rem 1 are implicitly chosen. Hence, the problem now becomes that
of designing B and Q which can minimize (12) subject to (8).

3.2. Optimal Design of the Precoder B for Fixed Equalizer Q

In this subsection, we assume the equalizer Q is fixed and design the
optimal precoder B. Define the eigenvalue decomposition (EVD)

WQG
(
GHQHWQG + θI

)−1
GHQHWH = UΣUH , (13)

where U is unitary and Σ = diag(σ1, . . . , σND ) with its diagonal
entries sorted in non-increasing order. Similarly, define the EVD

HHR−1
w H = VΣHVH , (14)
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where V is unitary and ΣH = diag(a1, · · · , aNS ). Based on

BHHHR−1
x HB = I−

(
I + BHHHR−1

w HB
)−1

, (15)

the problem of minimizing (12) subject to the power constraint (8)
is equivalent to that of minimizing

f(B) , tr
(
Σ(I + UHBHHHR−1

w HBU)−1) (16)

subject to (8). Next, we show that the optimal precoder Bo diago-
nalizes the matrix in (16).

Lemma 2 For any B satisfying (8), there exists another B̃ so that:
(a) B̃ also satisfies the power constraint (8);
(b) UHB̃HHHR−1

w HB̃U is diagonal with non-increasing
main diagonal entries;

(c) f(B̃) ≤ f(B).

Proof Define the EVD UHBHHHR−1
w HBU = ŨΣ̃ŨH , with

the eigenvalues, σ̃k, sorted in the non-increasing order. The objective
function is hence a weighted sum of the nonnegative diagonal entries
of Ũ(I + Σ̃)−1ŨH , denoted as xk:

f(B) = tr
(
Σ Ũ(I + Σ̃)−1ŨH) = ND∑

k=1

σkxk, (17)

= σND

ND∑
l=1

xl +

ND−1∑
k=1

(
(σk − σk+1)

k∑
l=1

xl

)
. (18)

Let B̃ , BUŨUH . Since both U and Ũ are unitary, B̃ satisfies
tr(B̃B̃H) = tr(BBH) ≤ PS , and UHB̃HHHR−1

w HB̃U = Σ̃ is
diagonal. Hence, f(B̃) can be obtained by replacing xk in (17) or
(18) with tk , (σ̃k + 1)−1. For the same matrix Ũ(I + Σ̃)−1ŨH ,
tk is a non-decreasing sequence comprising of its eigenvalues,
whereas the sequence xk includes its diagonal entries. The lat-
ter can be sorted into a non-decreasing sequence xπk . According
to [13, Thm. 4.3.26], we have∑k

l=1
tl ≤

∑k

l=1
xπl ≤

∑k

l=1
xl, (19)

for any 1 ≤ k ≤ ND (majorization). As per (18), f(B̃) ≤ f(B). �

Up to now, we can assume without loss of generality that B di-
agonalizes UHBHHHR−1

w HBU. Furthermore, for any such B, it
can be shown that there exists a B̂ satisfying UHB̂HHHR−1

w HB̂U

= UHBHHHR−1
w HBU and tr(B̂B̂H) ≤ tr(BBH). Specifi-

cally, B̂ = VΣBUH , where ΣB , [diag(b1, · · · , bND ),0]T ∈
CND×NS . The weighted sum MSE in (16) is now reduced to

f(B) =

ND∑
k=1

σkak/(1 + akb
2
k), (20)

subject to tr(ΣBΣH
B ) =

∑ND
k=1 b

2
k ≤ PS . This convex problem

can easily be solved. We skip the details to present the following
theorem directly:

Theorem 3 For a fixed equalizer Q, with the optimal Fo in (11),
the optimal precoder B is of the SVD form

Bo = VΣBUH . (21)

The diagonal entries bk of ΣB satisfy

b2k =

(√
σk
ak

1
√
γ
− 1

ak

)+

, (22)

where x+ , max(x, 0) and γ > 0 is the unique solution of∑ND
k=1 b

2
k = PS .

3.3. Optimal Design of the Equalizer Q for Fixed Precoder B

We can derive the following equation

WQG
(
GHQHWQG + θI

)−1
GHQHWH

= W − (QGGHQH/θ + W−1)−1, (23)

so that optimizing Q for a fixed B is equivalent to minimizing

g(Q) , tr
(
(QGGHQH/θ + W−1)−1 C

)
, (24)

where C , BHHHR−1
x HB. This problem can efficiently be

solved using steepest descent. Define q , diag(Q) = [q1, . . . , qND ]T .
The gradient of g(Q) with respect to q∗ is derived as

5q∗g = [∂g/∂q∗1 · · · ∂g/∂q∗ND
]T

= tr(QHECEQGGH)diag(WQRn)

− tr(WQRnQH)diag(ECEQGGH), (25)

where E , (QHGGHQH + θW−1)−1. The steepest descent
method starts from an initial q0 (or equivalently Q0) and searches
along the opposite direction of the gradient

qk+1 = qk − αk 5q∗ g|q=qk , (26)

until qk converges to a local optima. The step size αk can be chosen
according to Wolfe conditions [14].

3.4. Joint Design

Based upon the theoretical development in Sec. 3.1, 3.2 and 3.3, we
now propose an iterative algorithm for the joint design of B, F and
Q (cf. Sec. 2). The first step is to design B and Q that minimize
(12) subject to (8). Specifically, our algorithm starts from initial Q0

and B0, and updates B and Q repeatedly based on the methods pro-
posed in Sec. 3.2 and 3.3. This process generates a non-increasing
sequence of MSE values and is therefore guaranteed to converge to
a local optima. The second step is to compute the optimal Fo and ηo
as in Theorem 1. These procedures are summarized in Algorithm 1.

Algorithm 1: Joint Design
Initiate Q0, B0, m = 0, ε > 0;
repeat

Increment the counter m← m+ 1;
Compute Bm according to Theorem 3;
Compute Qm using the steepest descent method in Sec. 3.3;

until |MSE(Qm,Bm)−MSE(Qm−1,Bm−1)| ≤ ε;
Compute Fo and ηo according to Theorem 1;
Let Bo ← Bm, Qo ← η−1

o Qm.

Algorithm 1 is different from a conventional iterative approach
widely used to solve similar problems [6, 7, 16]. The latter needs to
iterate through all three matrices B, F and Q: if F and Q are fixed,
B is updated as the optimal precoder for the equivalent multiple-
input multiple-output (MIMO) channel [15]; if B and Q are held
constant, F is optimized according to (11); if B and F are preserved,
each diagonal entry of Q is the optimal MMSE receiver for the scalar
channel of the corresponding user. Our numerical results will show
that Algorithm 1 converges significantly faster than this approach.

A special case of the joint design is when Q = IND and W =
IND , which is in fact the same problem as that studied in [6]. How-
ever, the optimal Bo and Fo were obtained using an iterative ap-
proach in [6], whereas we derived simpler closed-form expressions
for them as per Theorem 3 and Theorem 1.
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Fig. 3. Speed of convergence for iterative algorithms

4. NUMERICAL SIMULATIONS

We first study the convergence behavior of the numerical algorithms
discussed in Sec. 3 and then compare the BER performance of differ-
ent designs. The following configurations and parameters are used
for the relay-assisted system: NS = NR = ND = 4, Rw = σ2

wI,
Rn = σ2

nI and σ2
w = σ2

n. We define two signal-to-noise ratio (SNR)
ρ1 = PS/(NSσ

2
w) and ρ2 = PR/(NRσ

2
n) that represent the link

quality of the first-hop and second-hop transmissions, respectively.
Convergence of the steepest descent method: For a typical chan-

nel realization, Fig. 3(a) shows the values of g(Q) in (24) versus
the number of iterations with five different randomly generated Q0.
ρ1 = ρ2 = 15dB and W = I. In general, the steepest descent
method of designing Q converges rapidly. With different initial ma-
trices Q0, the algorithm may converges to different local optima but
with insignificant difference in g.

Convergence of joint design approaches: We compare the speed
of convergence between the two approaches mentioned in Sec. 3.4:
the proposed Algorithm 1 and the conventional approach. The initial
values are B0 ∝ I, Q0 ∝ I and F0 ∝ I.1 As shown in Fig. 3(b), by
removing F from the iterating process, Algorithm 1 converges much
faster than the conventional algorithm, in fact after just one iteration.
A possible explanation is that at high SNRs, the second terms on the
right-hand side of both (15) and (23) are close to zero. Hence, it
follows from (12) that the optimal Bo would almost be independent
of Qo and vice versa.

Comparison of BER: In the simulations, the BS transmits four
independent uncoded QPSK symbol streams to their corresponding
destination users. The wireless channel between the BS and the relay
satisfies the Kronecker model: H = R

1/2
r HwR

1/2
t . Herein, Hw

has zero-mean, unit-variance, circularly symmetric complex Gaus-
sian entries that are statistically independent. The (i, j)-th entries of
Rr and Rt are both 0.7|i−j|. The forward channel satisfies G =
DGwR

1/2
t , where Gw has the same statistical characteristics as

Hw and the diagonal matrix D represents relative pathlosses of 0, 0,
3 and 6dB for different users.

The methods under comparison are: 1) ZF relaying [17]: B =√
PS/NSI, F = ηG†H† and Q ∝ I. 2) MMSE relaying with-

out precoder [18]: B =
√
PS/NSI, F as in (11) and Q ∝ I. 3)

Joint design of B and F without diagonal scaling (Q ∝ I) [6]; 4)

1The initial MSE values are different for the two methods because the op-
timal Fo for B0 and Q0 has already been implicitly selected in Algorithm 1.
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Fig. 4. BER comparison of a 4-user BC (QPSK, NS = NR =
ND = 4, W = I).

Proposed joint design of B, F and Q with diagonal scaling (Al-
gorithm 1). The average BERs of the multiple users are shown in
Fig. 4(a) and 4(b), where we let ρ1 = 25dB or ρ2 = 25dB and vary
the other SNR between 5 and 25dB. As expected, MMSE relaying
without precoder always outperforms ZF relaying without precoder.
The joint design of B and F leads to an SNR gain of 2–3dB over the
MMSE relaying without precoder. Furthermore, by including the di-
agonal Q in the joint design, the proposed diagonal scaling scheme
enables an additional SNR gain of 0.5–2dB at mid-to-high SNRs.

5. CONCLUSIONS

In this paper, we have studied the joint transceiver design for the
downlink of a cellular network assisted by a multi-antenna relay.
Considering the possible differences in pathloss, we proposed a di-
agonal scaling scheme which allows the multiple users to apply their
own complex-valued scaling factors to their received signals before
decoding. The corresponding diagonal equalizer matrix is optimized
together with a precoder at the BS and a linear processing matrix at
the relay, to minimize the weighted MSE under power constraints.
In particular, the optimal relaying matrix was first derived in closed
form as a function of the precoder and the equalizer. This enabled
the development of an efficient iterative algorithm (Algorithm 1) for
the joint design. Simulation results demonstrate lower BER with the
proposed diagonal scaling scheme than previous methods.
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