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ABSTRACT

We consider a set of transmitter-receiver pairs operating concur-

rently in the same spectral band. The transmitters and receivers are

equipped with multiple antennas and are restricted to apply single

stream beamforming. This setting corresponds to the single stream

multiple-input multiple-output (MIMO) interference channel. We

assume perfect channel state information at the transmitters and the

single-user decoding receivers. Efficient operating points in this set-

ting correspond to points on the Pareto boundary of the achievable

rate region. Characterizing all Pareto optimal points in the MIMO

interference channel is still an unsolved problem. An approach

to attain different Pareto optimal points in the MIMO interference

channel is rate profile optimization. Given the nonconvexity of the

problem, we propose an alternating approach based on successive

optimization of the transmit and receive beamforming vectors. For

fixed receive beamforming vectors, a solution for the rate profile

optimization exists and is solved by a set of convex feasibility prob-

lems. For fixed transmit beamforming vectors, we show that the rate

profile optimization can be solved by a set of feasibility problems

each corresponding to an inverse field of values problem. The con-

vergence of the alternating algorithm is guaranteed to a stationary

point of the original problem.

Index Terms— MIMO interference channel; single stream

beamforming; rate profile optimization; alternating optimization;

Pareto optimality

1. INTRODUCTION

We consider multiple transmitter-receiver pairs (links) which simul-

taneously utilize the same spectral band. Each transmitter sends a

single data stream of useful information to its intended receiver, and

each receiver treats the interference signals from unintended trans-

mitters as additive noise. We assume the transmitters and receivers

use multiple antennas. This setting corresponds to the single stream

multiple-input multiple-output (MIMO) interference channel.

Using models from noncooperative game theory, strategic games

between the links are studied in [1, 2]. The conditions for the global

stability of the Nash equilibrium in MIMO interference channels are

characterized in [1]. In order to improve the performance of the non-

cooperative links, interference pricing schemes have been studied in

[2]. Cooperative mechanisms in the MIMO interference channel are

proposed in [3, 4]. In [3], the transmit and receive strategies are

updated to balance the egoistic and altruistic behaviour of the links.

In [4], different generalisations of interference alignment algorithms

are proposed.

Efficient operating points in the MIMO interference channel cor-

respond to the Pareto optimal points. At these points, it is impossible

to increase the rate of one link without degrading the performance of

at least another link. In the MIMO interference channel, the problem

of finding specific Pareto optimal points such as the maximum sum-

rate and the proportional fair operating points are NP-hard problems

even for single antenna receivers [5]. Also, it has been proven that

finding the max-min fair operating point in the MIMO interference

channel is a strongly NP-hard problem [6].

Existing approaches to characterize the Pareto optimal points in

the MIMO interference channel are reported in [7, 8, 9]. In [7],

MIMO interfering broadcast channels are studied and an alternating

optimization is proposed to maximize the weighted sum-rate of the

system. In [8], a two-user single stream MIMO interference chan-

nel is considered and an alternating optimization is proposed where

in each iteration the rate of one link is optimized while fixing the

rate of the other link. The approach in [8] has the advantage over

the weighted sum-rate approach in achieving the points on the non-

convex part of the rate region [10]. The algorithm in [8] is however

not extensible to more than two links. Recently in [9], the necessary

transmit covariance matrices to achieve all Pareto optimal points in

MIMO interference channels are characterized and parameterized.

We consider rate profile optimization for characterizing all

Pareto optimal points in the K-user single stream MIMO inter-

ference channel rate region. Since this problem is nonconvex, we

propose an alternating approach based on iteratively optimizing the

transmit and receive beamforming vectors. For fixed receivers, the

setting corresponds to the multiple-input single-output (MISO) in-

terference channel and rate profile optimization is solved by a set of

convex feasibility problems in [11]. For fixed transmit beamforming

vectors, the setting corresponds to a single-input multiple-output

(SIMO) interference channel. We show that the rate profile opti-

mization in SIMO channels can be solved by a set of feasibility

problems each corresponding to an inverse field of value problem.

The alternating rate profile optimization is guaranteed to converge

to a stationary point of the original problem.

Outline: In Section 2, we describe the system model and state

the problem formulation. In Section 3, rate profile optimization in

MISO and SIMO interference channels are studied. The alternat-

ing rate profile optimization algorithm is presented with numerical

results in Section 4. In Section 5, we draw the conclusions.

2. PRELIMINARIES

Notations: Column vectors and matrices are given in lowercase and

uppercase boldface letters, respectively. ‖a‖ is the Euclidean norm

of a ∈ C
N . |b| is the absolute value of b ∈ C. (·)H denotes

Hermitian transpose. I is an identity matrix. Define the collection

{a}K := (a1, . . . , a|K|). CN (0,A) denotes a circularly-symmetric

Gaussian complex random vector with covariance matrix A.
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2.1. System and Channel Model

Consider a set K = {1, . . . ,K} of interfering links. Each transmit-

ter j uses nj antennas and each receiver k uses mk receive anten-

nas. The flat fading channel matrix from transmitter j to receiver k
is Hjk ∈ C

mk×nj . We assume that each transmitter transmits a

single data stream to its intended receiver. The beamforming vector

used at a transmitter j is wj from the set

wj ∈ Wj :=
{

w ∈ C
nj : ‖w‖2 ≤ 1

}

, (1)

where we assumed a total transmit power constraint of one without

loss of generality. The received signal at receiver k is written as

yk =
∑K

j=1
Hjkwjxj + zk, (2)

where xj ∼ CN (0, 1) is the signal from transmitter j and zk ∼
CN (0, Iσ2) is additive white Gaussian noise. The signal-to-

interference-plus-noise ratio (SINR) at receiver k after equalization

with the receive beamforming vector vk is

φk(vk, {w}K) =
|vH

k Hkkwk|
2

σ2‖vk‖2 +
∑

j 6=k
|vH

k Hjkwj |2
. (3)

Since the SINR in (3) is not affected by the amplitude of the receive

beamforming vector, vk is chosen from the set

vk ∈ Vk :=
{

v ∈ C
mk : ‖v‖2 = 1

}

, (4)

where the receive power is normalized to one without loss of gener-

ality. The achievable rate of link k is

Rk(vk, {w}K) = log2

(

1 + φk(vk, {w}K)
)

, (5)

where single-user decoding (SUD) is assumed at the receiver. The

rate region

R := {(R1(v1, {w}K), . . . , RK(vK , {w}K)) ⊂ R
K
+ :

wk ∈ Wk,vk ∈ Vk, k ∈ K}, (6)

is the K-dimensional set composed of all achievable rate tuples. The

set of Pareto optimal points in R is defined as [12, p. 14]

W(R) := {x ∈ R : there is no y ∈ R with y > x}, (7)

with componentwise inequality in (7). At a Pareto optimal point it

is impossible to strictly improve the performance of at least one user

without degrading the performance of another user. The set of strong

Pareto optimal points is a subset of the Pareto optimal points in (7)

and defined as:

P(R) := {x ∈ R : there is no y ∈ R with y ≥ x,y 6= x}, (8)

where the inequality in (8) is componentwise. An illustration of the

Pareto boundary in a two-user rate region is given in Figure 1.

2.2. Problem Formulation

Any point on the Pareto boundary of the rate region R can be at-

tained by the solution of the rate profile optimization problem1:

maximize
{v}

K
,{w}

K
,R̄

R̄ (9a)

s.t. Rk(vk, {w}K) = αkR̄, k ∈ K, (9b)

wk ∈ Wk, vk ∈ Vk k ∈ K. (9c)

1The rate profile approach has been first proposed for broadcast and
multiple-access channels in [13] and for MISO interference channels in [14].

R2(v2,w1,w2)

R

Pareto optimal point

strong Pareto boundary P(R) ⊆ W(R)

Pareto boundary W(R)

R1(v1,w1,w2)
α1

α2

b

0

b

Fig. 1. Illustration of Pareto optimality in a two-user rate region.

In (9), the rate profile (α1, . . . , αK) satisfies αk ≥ 0, k ∈ K and
∑K

k=1 αk = 1. The objective R̄ corresponds to the links’ sum-rate.

The rate profile specifies the direction for a ray starting in the ori-

gin of the rate region, and the point of intersection of the ray and

the Pareto boundary corresponds to the solution of the optimization

problem. An illustration for the solution of a rate profile optimiza-

tion is given in Figure 1. Solving the optimization problem in (9) for

all possible rate profiles achieves all points on the Pareto boundary

of the rate region R. The problem in (9) is however not convex, and

hence no method is known that can attain its solution efficiently.

We propose to decompose the problem in (9) into two problems

which are solved alternatingly. In the first problem, the transmit

beamforming vectors which solve the rate profile optimizaiton prob-

lem are found for fixed receive beamforming vectors. In the second

problem, the receive beamforming vecotrs are optimized for fixed

transmit beamforming vectors. Next, we discuss the two problems

independently. Later in Section 4, the solutions of the two problems

are used to construct the alternating algorithm.

3. OPTIMALITY IN MISO AND SIMO CHANNELS

3.1. Rate Profile Optimization in MISO Interference Channels

In this section, we assume the receive beamforming vectors are fixed.

The considered MIMO setting reduces to a MISO interference chan-

nel, and the rate region is a subset of R defined as:

RMISO := {(R1(v1, {w}K), . . . , RK(vK , {w}K)) ∈ R :

wk ∈ Wk, k ∈ K}. (10)

Rate profile optimization in MISO interference channels has been

studied in [11]. For a rate profile (α1, . . . , αK) the problem is

maximize
{w}

K
,R̄MISO

R̄MISO (11a)

s.t. Rk(vk, {w}K) ≥ αkR̄MISO, k ∈ K, (11b)

wk ∈ Wk, k ∈ K. (11c)

It is shown in [11] that the problem in (11) can be solved by a set of

feasibility problems:

find w1, . . . ,wK (12a)

s.t. Rk(vk, {w}K) ≥ αkt, k ∈ K, (12b)

wk ∈ Wk, k ∈ K, (12c)

where the parameter t > 0 is updated based on a bisection method.

The problem in (12) is transformed in [11, Section II.D] to a sec-

ond order cone programm (SOCP) and solved efficiently. The con-

vex feasibility problem is used in [15] to characterize the necessary
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Fig. 2. Illustration of the solutions of rate profile optimization in

two-user rate regions of MISO and SIMO interference channels.

beamforming vectors to achieve all Pareto optimal points in MISO

multicell settings with different transmit power constraints.

In Figure 2(a), the rate profile optimization is illustrated. Note

that only points on the strong Pareto boundary according to (8) are

achieved with (11). This is because the constraint in (11b) is an

inequality constraint as opposed to the equality constraint in (9b) in

the original problem. However, since at least one constraint in (11b)

is satisfied with equality with the solution of (11), the value of the

objective R̄MISO is the same as for the optimization problem with the

constraints in (9b) replaced with equality constraints.

3.2. Rate Profile Optimization in SIMO Interference Channels

In this section, we assume the transmit beamforming vectors {w}K
are fixed. The setting corresponds to a SIMO interference channel.

The rate region in the SIMO setting is a subset of the rate region R
in (6) and has the following property.

Proposition 1 The rate region of a SIMO interference channel is a

K-dimensional box:

RSIMO = {(r1, . . . , rK) ∈ R : rk ≤ Rk(v
MMSE

k , {w}K), k ∈ K},
(13)

where

v
MMSE

k =

(

σ2I +
∑

j 6=k
Hjkwjw

H
j HH

jk

)−1

Hkkwk

∥

∥

∥

(

σ2I +
∑

j 6=k
HjkwjwH

j HH
jk

)−1

Hkkwk

∥

∥

∥

. (14)

Proof: The proof is provided in Appendix A. �

In Figure 2 (b), an illustration of a two-user SIMO interference

channel rate region is plotted. The strong Pareto boundary accord-

ing to (8) consists of a single point corresponding to joint minimum

mean square error (MMSE) receive beamforming. The rate profile

optimization problem in SIMO interference channels is given as2:

maximize
{v}

K
,R̄SIMO

R̄SIMO (15a)

s.t. Rk(vk, {w}K) = αkR̄SIMO, k ∈ K (15b)

vk ∈ Vk, k ∈ K. (15c)

As in the MISO case, the problem in (15) can be solved by a set of

feasibility problems:

find v1, . . . ,vK (16a)

s.t. Rk(vk, {w}K) = αkt, k ∈ K. (16b)

vk ∈ Vk, k ∈ K. (16c)

2Rate profile optimization in SIMO interference channels has been con-
sidered in [16, Section IV.B]. The problem is solved by a set of feasibility
problems which are related to SINR balancing problems.

Algorithm 1: Alternating rate profile optimization.

Input: rate profile {α}K = (α1, . . . , αK) and accuracy ǫ

1 Initialize: i = 0; choose random {v}(0)K ;

2 repeat

3 solve (11) given {v}(i)K to get
(

{w}(i+1)
K , R̄

(i+1)
MISO

)

;

4 solve (15) given {w}(i+1)
K to get

(

{v}(i+1)
K , R̄

(i+1)
SIMO

)

;

5 i = i+ 1;

6 until R̄
(i)
SIMO − R̄

(i)
MISO < ǫ;

Output: {w}(i)K , {v}(i)K

where the parameter t ≥ 0 is updated according to a bisection

method. The problem in (16) can be rewritten as

find v1, . . . ,vK (17a)

s.t. v
H
k Qk(t)vk = 0, k ∈ K. (17b)

vk ∈ Vk, k ∈ K, (17c)

where the constraint in (16b) has been reformulated to (17b) with

Qk(t) = Hkkwkw
H
k H

H
kk

−
(

2αkt − 1
)

(

σ2
I +

∑

j 6=k
Hjkwjw

H
j H

H
jk

)

. (18)

The problem in (17) is called the inverse field of values problem

[17, 18]. In order to check the feasibility of (17) for a chosen t, it

suffices to test whether 0 ∈ F(Qk(t)), where F(Qk(t)) is the field

of values of Qk(t) defined in (24) in Appendix A. Testing whether

0 ∈ F(Qk(t)) is equivalent to checking whether zero lies between

the smallest and largest eigenvalues of Qk(t). Hence, in order to

determine the optimal t through a bisection approach, the complexity

of the feasibility problem in (17) corresponds to the complexity of

an eigenvalue decomposition of Qk(t). After the convergence of

the bisection method which determines the optimal t, each receive

beamforming vector vk is determined by the algorithm in [17] which

solves the inverse field of values problem. The algorithm requires

five eigenvalue decompositions [17, Section 5].

4. ALTERNATING OPTIMIZATION

The alternating rate profile algorithm is described in Algorithm 1.

Given the receive beamforming vectors, the transmit beamform-

ing vectors are updated according to Problem (11). The optimized

transmit beamforming vectors are then fixed to solve for the receive

beamforming vectors according to Problem (15). Note that updat-

ing the receive beamforming vectors in each iteration according to

MMSE beamforming in (14) is not appropriate since the achieved

rate tuple after the receiver optimization would not be along the rate

profile direction.

In Algorithm 1, the measures R̄
(i)
MISO and R̄

(i)
SIMO for MISO and

SIMO rate profile optimization correspond to the distances from the

origin to the Pareto boundary along the ray in the direction of the rate

profile. In each iteration i, an improvement R̄
(i)
SIMO − R̄

(i)
MISO ≥ 0 must

be achieved. If the improvement is less than an accuracy measure ǫ,
then the algorithm terminates. Since the rate region is a bounded set,

the alternating algorithm is guaranteed to converge according to the

monotone convergence theorem.
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Fig. 3. Plot of two user rate region at 0 dB SNR and two antennas at

each transmitter and receiver.

Theorem 1 The alternating rate profile optimization in Algorithm

(1) converges to a stationary point of the original problem in (9).

Proof: The proof follows similar steps as the proof of [19, Proposi-

tion 1], and will be provided in [20]. �

In Figure 3, a two-user rate region is plotted. All transmitters

and receivers use two antennas and the signal-to-noise ratio (SNR),

defined as 1/σ2, is 0 dB. Single random channel matrix realisations

are selected. The cloud of points in Figure 3 correspond to random

norm-one transmit beamforming vectors with MMSE receive beam-

forming. For a selected rate profile and accuracy measure ǫ = 10−5,

the solutions of the transmitter and receiver optimizations are plotted

during the alternating optimization. The performance improvement

in each iteration can be observed and the alternating optimization

terminates at a point very close to the Pareto boundary.

For 50 different samples of rate profiles, we are able to plot the

points on the Pareto boundary of the rate region in Figure 3. We

choose the initial receive beamforming vectors {v}(0)K according to

the dominant left eigenvectors of the corresponding direct channel

matrices. However, since the quality of the solution of the alter-

nating algorithm depends on the initial choice of the receive beam-

forming vectors, it is also possible to run the algorithm for different

random initial receive beamforming vectors and then choose the so-

lution with the best performance. In Figure 3, the points plotted with

the red cross correspond to the iterative weighted MMSE algorithm

proposed in [7]. The approach in [7] optimizes the weighted sum-

rate and hence points on the nonconvex part of the Pareto boundary

are not achieved. In Figure 4, we plot a three dimensional rate re-

gion. The transmitters and receivers use two antennas each, and the

SNR is 0 dB. For 121 rate profile samples, the Pareto boundary is

obtained using the alternating rate profile algorithm.

5. CONCLUSIONS

We have considered the K-user single stream MIMO interference

channel. In this setting, achieving Pareto optimal points through

rate profile optimization is a nonconvex problem. We have pro-

posed an alternating optimization algorithm; For fixed receivers, we

used existing results on rate profile optimization in MISO channels.

For fixed transmitters, we show that rate profile optimization can be

solved by a set of feasibility problems each corresponding to an in-

verse field of value problem. The proposed alternating rate profile

optimization is guaranteed to converge to a local optimum.
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Fig. 4. A plot of a three user rate region at 0 dB SNR and two

antennas at each transmitter and receiver.

A. PROOF OF PROPOSITION 1

The achievable rate of link k depends only on its receive beam-

forming vector vk (given that {w}K are fixed). Thus, we have

to show that the achievable rate of a link k takes values between

[0, Rk(v
MMSE

k , {w}K)] for all vk ∈ Vk. Since the achievable rate of

link k in (5) is monotonically increasing in SINR, it is sufficient to

analyze the SINR expression in (3) for the proof. We reformulate

the SINR of a link k as

φk(vk, {w}K) =
vH
k Akvk

vH
k Bkvk

, (19)

where

Ak = Hkkwkw
H
k H

H
kk (20)

Bk =
(

σ2
I +

∑

j 6=k
Hjkwjw

H
j H

H
jk

)

. (21)

Since Bk is full rank, we can transform (19) to a Rayleigh-Ritz ratio

[21, Chapter 4.2] by substituting vk = B
− 1

2

k zk to get

φk(vk, {w}K) =
zH
k B

− 1

2

k AkB
− 1

2

k zk

zH
k zk

. (22)

From the Rayleigh-Ritz Theorem for Hermitian matrices [21, Theo-

rem 4.2.2] follows that

φk(vk, {w}K) ∈ F

(

B
− 1

2

k AkB
− 1

2

k

)

, (23)

where the set F(X) is the field of values of a matrix X defined as

[22, Chapter 1]:

F(X) =
{

x
H
Xx ∈ R : ‖x‖2 = 1

}

. (24)

The field of values F(X) is a compact convex set. If X is Her-

mitian, then F(X) ⊂ R with the smallest element and largest

element corresponding to the smallest and largest eigenvalues of

the matrix X , respectively. Since B
− 1

2

k AkB
− 1

2

k is a rank-one

positive semi-definite matrix, then the SINR in (22) takes val-

ues between zero and the largest eigenvalue of B
− 1

2

k AkB
− 1

2

k .

With Ak given in (20), the SINR in (22) is maximized by zk =

B
− 1

2

k Hkkwk which is the dominant (not normalized) eigenvector

of B
− 1

2

k Hkkwkw
H
k HH

kkB
− 1

2

k . Substituting zk in vk = B
− 1

2

k zk

and normalizing vk we get the expression in (14).
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