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ABSTRACT

In this paper we propose a structured low-latency interference
alignment scheme for the two-user single-input single-output (SISO)
time-invariant X channel. The scheme is based on asymmetric (non-
circular) complex signals generated by linear precoders and linear
zero-forcing receivers. In addition to achieving the optimal (sum)
degrees of freedom (DoF) of 4/3, the precoders are balanced in the
sense that for pairs of symbols the signal-to-noise ratio at the input to
the decoder is the same. Furthermore, the sum rate is shown to have
a small power offset—in one simple scenario that offset is at least
6 dB smaller than the offset of an existing scheme. The principles
that underlie this scheme are extended to a time-varying channel with
delayed feedback in which either asymmetric symmetric signalling
is used.

Index Terms— interference alignment, degrees of freedom,
power offset

1. INTRODUCTION

In the quest to improve the spectral efficiency of wireless networks,
the simplicity of signalling schemes that avoid interference is being
challenged by the potential of schemes that manage interference to
achieve high utilization efficiencies. An intriguing approach to man-
aging interference is that of interference alignment (IA) [1, 2, 3].
The basic principle that underlies (linear) IA is to arrange the sig-
nalling in such a way that the interference components arriving at a
particular receiver are “aligned” in the sense that they lie in a proper
subspace of the space spanned by the received signal. If the portion
of the received signal that is dependent of the desired signal has a
component that lies outside that “interference subspace”, then that
component can be extracted without interference using a simple pro-
jection (linear receiver). In its natural form, the design of an interfer-
ence alignment scheme is dependent on the availability of accurate
channel state information (CSI), but some of the principles are being
extended to other cases; e.g., [4, 5]

In this paper, we develop structured interference alignment
schemes for the two-user single-input single-output (SISO) X chan-
nel, which is illustrated in Fig. 1. Under the X channel model,
each transmitter has independent messages to be sent to each of
the receivers. In the assessment of communication schemes for this
channel model, and indeed schemes for many other channel models,
one of the first steps is often an assessment of the degrees of free-
dom (DoF), which corresponds to the slope, at high signal-to-noise
ratios (SNRs), of the achievable rate in bits-per-channel-use against
the SNR in “3-dB units”; i.e., log2(SNR). For the two-user SISO
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time-invariant channel with perfect CSI, the optimal DoF for the
sum of the rates of the four messages in Fig. 1 is 4/3. This optimal
value for the DoF can be achieved using asymmetric (non-circular)
complex signalling over blocks of three channel uses [6]. In the
absence of CSI for the design of the transmitters, the optimal DoF
for this system collapses to one.

Although assessing a communication scheme in terms of its DoF
is an important step, it is widely acknowledged as a somewhat coarse
metric in that it only characterizes the high SNR slope of the achiev-
able rate [7]. As a result, the design guidance provided by an anal-
ysis of the DoF is useful, but incomplete. Indeed, in the case of the
two-user SISO X channel a large class of systems that achieve the
optimal DoF can be obtained by choosing some of the precoders ar-
bitrarily, and then applying the (linear) interference alignment con-
ditions to obtain the other precoders. A refined assessment of the
performance, and additional design guidance, can be obtained by
seeking an affine approximation of the achievable rate as a function
of log2(SNR) at high SNR [8]. This approximation takes the form
of S∞

`
log2(SNR)−L∞

´
, where the slope S∞ is the DoF and L∞

is called the power offset. This approximation suggests that if we
seek schemes that perform well at high SNRs, then we should search
among the schemes that achieve the optimal DoF for schemes that
have small power offsets.

Like some existing schemes, the precoding schemes proposed in
this paper for the time-invariant two-user SISO X channel achieve
the optimal DoF using asymmetric (non-circular) signalling over
blocks of three channel uses. However, the proposed schemes have
the additional desirable property that pairs of real symbols have the
same decision point SNR. This property can be used to simplify
the encoding requirements at the transmitter. For this reason, the
proposed schemes will be said to be “balanced”. In addition to be-
ing balanced, we will show by simulation that under a simple i.i.d.
Rayliegh fading model, the proposed scheme achieves a reduction in
the power offset of more than 6 dB over that of the existing scheme
in [6], while maintaining the optimal DoF.

The principles that underlie the proposed design for the time-
invariant case with perfect CSI are then applied to the delayed CSI
scenario in [5]. We propose both circularly symmetric and asymmet-
ric signalling schemes for this scenario that achieve the optimal DoF
and have small power offsets.

2. SYSTEM MODEL

We consider the two-user SISO memoryless X channel illustrated in
Fig. 1. In this simple network, each of the transmitters has indepen-
dent messages to send to each of the receivers. The channel from
transmitter i to receiver j is modeled as being linear and memory-
less, with the gain at channel use t being hji[t]. The noise at each
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Fig. 1. A model for the two user SISO X channel

receiver is modeled as being additive, white, and independent be-
tween receivers. The (complex) output at receiver j at channel use t
can be modelled as:

yj [t] = hj1[t]x1[t] + hj2[t]x2[t] + zj [t], (1)

where xi[t] denotes the (complex) symbol transmitted by transmitter
i at channel use t, and zj [t] denotes the additive noise at the jth
receiver. In Section 3 we will focus on the case of the time-invariant
channel, with hji[t] = hji, and in Section 4 we will consider the
case of the time-varying channel.

The schemes that we will consider in this paper are based on 3
uses of the channel model in (1), which we will nominally index as
t = 1, 2 and 3. If we define yj =

ˆ
yj [1], yj [2], yj [3]

˜T , and define
xi and zj analogously, then we can write the signal at receiver j as

yj = Hj1x1 +Hj2x2 + zj , (2)

where Hji = Diag
`
hji[1], hji[2], hji[3]

´
. As we will consider

the possibility of asymmetric signalling [6], it is more convenient
to rewrite the model in terms of the real and imaginary parts of
the signal. In particular, if we define ỹj =

ˆ
Re(yj [1]), Im(yj [1]),

Re(yj [2]), Im(yj [2]),Re(yj [3]), Im(yj [3])
˜T , and define x̃i and z̃j

analogously, then the model in (1) can be rewritten as

ỹj = H̃j1x̃1 + H̃j2x̃2 + z̃j , (3)

where H̃ji ∈ R6×6 is a block diagonal matrix whose kth diagonal

block is H̃ji[k] =

»
Re(hji[k]) − Im(hji[k])
Im(hji[k]) Re(hji[k])

–
.

Since the optimal DoF for the case of a constant channel is 4/3
[6], and since we would like each message to have equal access to
the channel, we will first consider systems in which each transmitter
sends a pair of real symbols to each receiver in the three complex
channel uses. (See Section 4 for the complex case.) We will denote
the symbols destined for receiver 1 by the vectors ũ1, ũ2 ∈ R2×1,
where the index denotes the transmitter that sends the symbols and
the symbols destined for receiver 2 by ṽ1, ṽ2 ∈ R2×1; see Fig. 1.

For simplicity we will focus on linear precoding schemes and
hence the transmitted signal vectors xi ∈ C3 can be written as:

x1 = F11ũ1 + F21ṽ1 (4a)
x2 = F12ũ2 + F22ṽ2 (4b)

Since ũi and ṽi are real vectors, the distributions of the transmitted
signals are not necessarily circularly symmetric [6]. If the symbols
are normalized so that E{ũiũ

T
i } = I and E{ṽiṽ

T
i } = I, then the

average transmission power assigned to ũi is Tr
`
F1iF

H
1i

´
/3 and

the average transmission power assigned to ṽi is Tr
`
F2iF

H
2i

´
/3.

Returning to the real-valued model, we can also rewrite (4) as:

x̃1 = F̃11ũ1 + F̃21ṽ1 (5a)

x̃2 = F̃12ũ2 + F̃22ṽ2 (5b)

where F̃ji is defined conformally with x̃i.
In terms of achieving the optimal DoF for this scenario, it is

sufficient to restrict attention to receivers that separate the estimates
of the individual transmitted symbols by using a linear zero-forcing
equalizer and then perform separate scalar decoding of the desired
symbols. Since

ỹ1 = H̃11

`
F̃11ũ1 + F̃21ṽ1

´
+ H̃12

`
F̃12ũ2 + F̃22ṽ2

´
, (6a)

ỹ2 = H̃21

`
F̃11ũ1 + F̃21ṽ1

´
+ H̃22

`
F̃12ũ2 + F̃22ṽ2

´
, (6b)

this zero forcing architecture can achieve the optimal DoF using sep-
arate ideal Gaussian codebooks for each of the transmitted symbols,
if there exist precoders F̃ji ∈ R6×2 and equalizers G̃j ∈ R4×6 that
satisfy the linear IA conditions, e.g., [3],

rank
`
G̃j

ˆ
H̃j1F̃j1 H̃j2F̃j2

˜´
= 4, j = 1, 2, (7a)

G̃1

ˆ
H̃11F̃21 H̃12F̃22

˜
= 0, (7b)

G̃2

ˆ
H̃21F̃11 H̃22F̃12.

˜
= 0. (7c)

If such matrices exist, then we can permute the entries of G̃j so that
the estimates of the transmitted symbols at the inputs to the decoders
can be written as:»

û1

û2

–
= G̃1ỹ1 = Diag(α1, α2, α3, α4)

»
ũ1

ũ2

–
+ G̃1z̃1, (8a)»

v̂1

v̂2

–
= G̃2ỹ2 = Diag(β1, β2, β3, β4)

»
ṽ1

ṽ2

–
+ G̃2z̃2, (8b)

where, for example, α1 = g̃1H̃11 f̃
1
11, where g̃1 is the first row of

G̃1 and f̃1
11 is the first column of F̃11. Any set of real matrices

{F̃ji, G̃ji}i,j∈{1,2} that satisfies the conditions in (7) enables the
optimal DoF to be achieved, and a scheme for choosing such ma-
trices was described in [6]. That scheme is based on randomly se-
lecting some of the precoding matrices, followed by an application
of the (linear) IA conditions to obtain the others. However, as dis-
cussed in the introduction, the DoF can be a rather coarse measure
of the system performance [7]. Since we are looking at the scalar
decoding schemes, the actual achievable rate depends on the SNRs
at the decoder inputs. For receivers 1 and 2, these are:

ρ1,i =
α2

i

σ2
1

ˆ
G̃1G̃

T
1

˜
ii

and ρ2,i =
β2

i

σ2
2

ˆ
G̃2G̃

T
2

˜
ii

, (9)

respectively, where σ2
j is the variance of the additive white noise at

receiver j.

3. THE PROPOSED BALANCED SNR SCHEME

In this section, we propose a precoding scheme for the time-invariant
SISO X channel that is structured so that pairs of real symbols have
the same transmitted power and the same SNR at the intended re-
ceiver, and hence can support same rate. In particular,

ρj,1 = ρj,2, ρj,3 = ρj,4 j ∈ {1, 2}. (10)
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Fig. 2. Delayed CSIT model. (Adapted from [9].)

In order to achieve the optimal 4/3 DoF, each transmitter sends
4 real symbols in 3 channel uses. Using the notation of the model in
(4), we propose to structure the precoders for ũ1 and ṽ2 as:

F11 =

24f1c1 0
f1 jf1
0 jf1c1

35 and F22 =

24 f2 0
f2c2 jf2c2
0 jf2

35 , (11)

where j =
√
−1 and fi and ci are complex scalars that can be cho-

sen to optimize other aspects of the system performance subject to
a chosen power constraint on the average transmission powers; see
Section 2. With this choice of F11 and F22, we design the precoders
for ũ2 and ṽ1 so that the interfering terms appear at the receiver in
the same subspace. That is, we construct F12 and F21 according to
the following interference alignment conditions:

H̃11F̃21 ≡ H̃12F̃22 and H̃21F̃11 ≡ H̃22F̃12, (12)

where the symbol ≡ is used to denote the condition that the sub-
spaces spanned by the columns of the matrices are the same.

Once the precoding matrices have been determined in this way,
the zero-forcing equalizers can be found using (7). In particular,
the interference space for receiver 1 is the span of the columns of
the 6 × 4 real matrix

ˆ
H̃11F̃21, H̃12F̃22

˜
. The interference align-

ment conditions ensure that the (column) rank of this matrix is 2, and
hence one can construct a zero-forcing equalizer G̃1 ∈ R4×6 from
the null space of that matrix.

Due to the specific structure of the precoding matrices on the
transmitter side, the received powers for each of the two real ele-
ments of ũ1 =

ˆ
u1

1, u
2
1

˜T are the same. Indeed, using (8), (11) and
(12) we have

g̃1H̃11 f̃
1
11 = g̃2H̃11 f̃

2
11. (13)

That is, α1 = α2. Hence, the SNRs and the achievable rates for
u1

1 and u2
1 are equal. The same conclusion holds for the three other

pairs of symbols. Having the ability to decode 8 real symbols in
3 channel uses, we can see that our model still able to achieve the
optimal 4/3 DoF. In the simulation section, we will show that the
proposed scheme has a significant performance improvement over
the basic scheme in [6].

4. BLOCK FADING CHANNEL WITH DELAYED
FEEDBACK

Asymmetric complex signaling is a key ingredient for achieving the
DoF of the X channel in case of a time-invariant channel. When the
channel is time-varying, the fluctuations in the channel coefficients
are sufficient to provide the receivers with linearly independent equa-
tions to decode their desired signals and the question that arises is
whether or not asymmetric signaling may be useful. We now ex-
amine that question in the case of block fading channel model with
delayed CSI at the transmitter (CSIT); e.g., [5, 9]; see Fig. 2.

According to this block fading model, the i.i.d. channel coeffi-
cients remain constant over the coherence time of the channel, then
change independently to new values. The receivers have instanta-
neous CSI, which is fed back to the transmitters with a delay. At the
start of fading block n, the transmitters have the knowledge of the
CSI up to the block (n − 1), and after the second channel use, they
obtain the CSI for block n.

Now, we have to distinguish two different channel scenarios. If
the channel is complex, then symmetric signaling can be used to
achieve the optimal DoF. However, this DoF cannot be achieved us-
ing asymmetric complex signaling because IA is not feasible in that
case. On the other hand, if the channel is real, both symmetric and
asymmetric signalling can be used to achieve the optimal DoF.

For the case of a complex channel and symmetric signaling, we
consider the input signals u1, u2, v1 and v2 that are complex, Gaus-
sian and circularly symmetric. In this setting, the same 4/3 DoF that
was achieved in the case of the time-invariant channel with instanta-
neous CSI by using asymmetric signalling can be achieved in three
channel uses that cross a boundary between fading blocks (e.g., slots
1, 2 and 7 in Figure 2). The transmitters have full knowledge of the
outdated and current CSI at the end of the second channel use of each
fading block. In the first two channel uses of the scheme, transmitter
1 sends the signal: »

f11(1)
f11(2)

–
u1 +

»
f21(1)
f21(2)

–
v1, (14)

while transmitter 2 sends the signal:»
f12(1)
f12(2)

–
u2 +

»
f22(1)
f22(2)

–
v2, (15)

where fii(t) may be chosen arbitrarily and fij(t) are chosen accord-
ing to: »

f21(1)
f21(2)

–
=

»
f22(1)
f22(2)

–
,

»
f12(1)
f12(2)

–
=

»
f11(1)
f11(2)

–
. (16)

In the third channel use, transmitter 1 sends f11(3)u1+f21(3)v1
and transmitter 2 sends f12u2 + f22(3)v2 where f12(3) and f21(3)
depend on the previous and the current CSI and designed to al-
low IA at the receivers. The signal that arrives at receiver 1,ˆ
y1(1), y1(2), y1(3)

˜T is:24h11

“h
f11(1)
f11(2)

i
u1 +

h
f21(1)
f21(2)

i
v1

”
+ h12

“h
f22(1)
f22(2)

i
v2 +

h
f12(1)
f12(2)

i
u2

”
g11

`
f11(3)u1 + f21(3)v1

´
+ g12

`
f22(3)v2 + f12(3)u2

´
35

(17)
where gji is the channel coefficient from transmitter i to receiver j
during the third channel use. Since the channel gains hji and gji are
complex scalars, the following choices for fij(3) are sufficient for
the decodability of u1 and u2 at receiver 1 and v1 and v2 at receiver
2 and hence to achieve the optimal DoF:

f21(3) =
h11f21(2)g12f22(3)

h12f22(2)g11
, f12(3) =

h22f12(2)g21f11(3)

h21f11(2)g22
.

(18)
When dealing with the real channel case, asymmetric signaling

can be used to achieve the optimal DoF in a delayed CSIT model.
The precoding process is quite similar to the symmetric signaling
case, but each precoder is now a matrix with two columns. For con-
sistency with the previous case, we denote the (t, k)th entry of Fij

as fk
ij(t). Following the above approach, the transmitters choose the

entries in the first and second rows of F11 and F22 arbitrarily. These
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entries correspond to the first two channel uses in which the CSI is
unknown. The entries of the first two rows of the other precoding
matrices are chosen so that»
fk
21(1)
fk
21(2)

–
=

»
fk
22(1)
fk
22(2)

–
,

»
fk
12(1)
fk
12(2)

–
=

»
fk
11(1)
fk
11(2)

–
, k ∈ {1, 2}.

(19)
At the third channel use, the following conditions must hold in order
for IA to be feasible:

fk
21(3) =

h11f
k
21(2)g12f

k
22(3)

h12fk
22(2)g11

, fk
12(3) =

h22f
k
12(2)g21f

k
11(3)

h21fk
11(2)g22

.

(20)
The basic scheme described above is DoF optimal, but its per-

formance can be greatly improved by imposing structure on the pre-
coders that are arbitrarily chosen. To achieve the attractive properties
of the balanced SNR scheme, we suggest the following structure:

F11 =

24c1 0
0 jc1
c1 jc1

35 and F22 =

24c2 0
0 jc2
c2 jc2,

35 , (21)

where c1 and c2 are complex scalars that can be chosen arbitrarily.
The design of the remaining precoders follows the standard require-
ments in (7). In order to achieve equal pairwise decision point SNRs
at the intended receivers, each receiver should exchange the order
of the second and the third received signals before processing. For
example, the signal at receiver 1 can be written as:

ỹ1 =

24ỹ1(1)
ỹ1(2)
ỹ1(3)

35 =

H̃11

`
F̃11ũ1 + F̃21ṽ1

´
+ H̃12

`
F̃12ũ2 + F̃22ṽ2

´
(22)

where ỹ1 ∈ R6×1 and H̃ji ∈ R6×6 is a block diagonal matrix
whose diagonal blocks are {H̃ji, H̃ji, G̃ji}. When linear zero forc-
ing equalization is applied, the signal at the decoder inputs is

K11

`
F11ũ1 + F21ṽ1

´
+ K12

`
F12ũ2 + F22ṽ2

´
, (23)

where Kji ∈ R6×6 is a block diagonal matrix whose diagonal
blocks are {H̃ji, G̃ji, H̃ji}. Similarly , F11,F21,F12 and F22 are
F̃11, F̃21, F̃12 and F̃22 with the real and imaginary components of
the second and the third channel uses being swapped. Now, follow-
ing the same analysis presented in Section 3, the SNRs of every pair
of real symbols will be exactly the same and the optimal DoF can
be achieved using idealized scalar Gaussian codes. Furthermore, in
the simulation section, we will show that the proposed scheme has a
significantly smaller power offset than the basic scheme, in both the
symmetric and asymmetric cases.

5. SIMULATION RESULTS

We now compare the sum rate performance of the proposed schemes
with that of the corresponding existing “basic” schemes that involve
more arbitrary choices of some of the parameters [6]. In all the com-
parisons, the channels are i.i.d. Rayleigh fading and we evaluate the
average of the sum rates over 1,000 realizations. We begin with
the time-invariant channel model presented in Section 3. In Fig. 3
we provide the performance of the proposed scheme, with f1 and
f2 either being randomly chosen or being matched to the channel

Fig. 3. Average Sum Rate in case of constant channel model

Fig. 4. Average Sum Rate for real channel with delayed CSIT

coefficients, i.e., fi = h∗ii. For comparison, we also provide the per-
formance of the basic asymmetric complex signaling scheme. The
figure shows the that proposed balanced scheme provides a large re-
duction in the power offset—more than 6 dB—relative to that of the
basic scheme, even in the matched channel case. This suggests that
the specific structure of the precoding scheme plays a more impor-
tant role than matching to the channel condition.

Moving to the delayed CSIT model with real channel coeffi-
cients, the advantages of the proposed balanced scheme remain. In
Fig. 4, the power gap between the proposed balanced scheme and
symmetric signaling with random initialization is about 4dB, while
the gap between the proposed balanced scheme and the basic asym-
metric signaling scheme exceeds 12dB. Now, if we applied the same
structure for the precoders of the symmetric signaling, we found that
the performance gap vanishes. Interestingly, the proposed balanced
scheme provides a way for the initialization of the precoders of the
symmetric signaling that result in improved sum rate performance.
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