SHARING VS. SPLITTING SPECTRUM IN OFDMA FEMTOCELL NETWORKS

Omar Mehanna

Dept. of Electrical and Computer Engineering, University of Minnesota

ABSTRACT

A network comprised of high-density femtocells coexisting with lowdensity macrocells, in an orthogonal frequency-division multiple access (OFDMA) setting, is considered. Two approaches are investigated: (1) *spectrum sharing* where macrocells and femtocells can access the same subchannels, and (2) *spectrum splitting* where macrocells and femtocells access separate portions of the spectrum. In both approaches, the trade-off between the utilized bandwidth and the signal-to-interference ratio (SIR), as femtocells or macrocells access more subchannels, is studied. The number of utilized subchannels that maximizes the average spectral efficiency for femtocells, subject to a minimum average spectral efficiency constraint for macrocells, is analyzed for both approaches, showing that the performance with spectrum splitting is better than spectrum sharing, for the considered model.

1. INTRODUCTION

Femtocell access points (FAPs) are short range, low cost, and low power base stations, installed by end-users for better indoor signal transmission and reception, coexisting with the macro-cellular network, and utilizing the same spectrum. Managing the cross-tier femto-macro interference is a fundamental challenge that limits the 'cohabitation dividend', and thus the appeal of large-scale femto deployment and integration with the cellular infrastructure. The currently dominant wireless standards (LTE and WiMAX) divide the available spectrum into orthogonal subchannels (i.e., OFDMA). This facilitates bandwidth splitting between femtocells and macrocells, possibly easing coexistence at the expense of limiting individual rates and aggressive spatial reuse. The goal of this work is to study this trade-off from the viewpoint of average spectral efficiency.

In [1], a coverage and interference analysis based on a realistic OFDMA macro/femtocell scenario is provided, assuming that FAPs are aware of the presence of neighboring macro- and femtocells, as well as their respective spectrum allocations. A different interference control method is proposed in [2], where femtocells adaptively allocate their power across the subchannels based on a load-spillage power control method. However, the overhead associated with acquiring information about neighboring cells in [1] and [2] is prohibitive in high density, random, and dynamic femtocell networks.

Instead of traditional network planning and optimization techniques, random Poisson point process (PPP) models have been recently used to model random wireless networks, and provide tractable and accurate analysis [3, 4, 5, 6]. In [4], a PPP model is used to model K tiers of randomly located base stations (BSs) and develop tractable analysis for the coverage probability, where it is assumed that an arbitrary mobile user can connect to any BS if it provides the strongest signal. A similar model was considered in [5], where it is shown that it is generally preferred that each of the coexisting systems utilizes its own assigned spectrum, rather than allowing all systems to concurrently use the whole spectrum. The analysis in [4] and [5] assumed a single, indivisible channel; the additional degree of freedom associated with multiple frequency subchannels was not considered. On the other hand, the number of subbands partitioning the bandwidth that maximizes the spatial density of transmissions, with a constraint on the outage probability, was characterized in [6] for a single tier ad-hoc network. The analysis in [6] does not include the additional complexity associated with multiple coexisting networks. Another important difference between our work and [4, 5, 6] is that we consider a setting in which the transmission rate is adapted to the instantaneous SIR, and thus the average spectral efficiency is more appropriate than the transmission capacity, which is pertinent in fixed-rate scenarios, as a performance metric.

In this work, we model the locations of FAPs and macro base stations (MBSs) using PPPs in an OFDMA setting, and analyze the performance of two main approaches: (1) spectrum sharing where macrocells and femtocells can access the same subchannels, and (2) spectrum splitting where macrocells and femtocells access separate portions of the spectrum. It is clear that cross-tier interference limits the performance with spectrum sharing, whereas macrocells and femtocells sacrifice a portion of the spectrum to eliminate the crosstier interference with spectrum splitting. In both cases, there is a trade-off in spectral efficiency between the utilized bandwidth and the signal-to-interference ratio (SIR), as femtocells or macrocells access more subchannels.We study this trade-off and characterize the number of subchannels accessed by femtocells and macrocells to maximize the average spectral efficiency for femtocells subject to a minimum average spectral efficiency constraint for macrocells, thus ensuring fair coexistence [5]. We show that the ratio between the maximized femtocell average spectral efficiency with spectrum sharing and with spectrum splitting is increasing (above one) as the ratio between the femtocell transmit-power and the macrocell transmitpower, or the femtocell density, increases. Hence, this work shows that it is generally better to assign separate portions of the spectrum to macrocells and femtocells, rather than sharing the same subchannels, for the considered model.

2. NETWORK MODEL

We consider a downlink scenario, where the random locations of FAPs are modeled as a realization of a homogeneous PPP of intensity λ_F on the 2-D plane. MBS locations are also modeled as a realization of a PPP with a smaller intensity λ_M [4]. We assume a *closed access* system, where at each time instance, each FAP communicates with a single femto mobile station (FMS) that is at distance d_F meters away, and each MBS communicates with a single macro mobile station (MMS) that is at distance d_M meters away. The fixed distance assumption can be easily relaxed to account for any random distance distribution [5]. A similar model can be used for the uplink scenario; the downlink case is considered for clarity of exposition.

A total bandwidth of W Hz is divided into L equal orthogonal subchannels of W/L Hz each, as in OFDM. When the *spectrum sharing* approach is adopted, macrocells and femtocells have access to the same subchannels. In this case, each MBS randomly selects $K_M \in \{1, \ldots, L\}$ subchannels for transmission, while each FAP randomly selects $K_F \in \{1, \ldots, L\}$ subchannels for transmission.

Supported in part by NSF CCF grant 0747332.

sion. The received signal at any FMS or MMS, at any subchannel, suffers from interference from all (non-intended) FAPs and MBSs transmitting on the same subchannel. On the other hand, when the *spectrum splitting* approach is used, the spectrum is split between macrocells and femtocells such that νL subchannels are allocated for macrocells, while $(1 - \nu)L$ subchannels are allocated to femtocells, where $0 \le \nu \le 1$. In this case, each MBS randomly selects $K_M \in \{1, \ldots, \nu L\}$ subchannels for transmission while each FAP randomly selects $K_F \in \{1, \ldots, (1 - \nu)L\}$ subchannels for transmission. The random subchannel selection approach is simple, analytically tractable, and practically appealing [6]. The coordination overhead that is necessary for a more intelligent subchannel allocation scheme is prohibitive in the dense and dynamic environment that is considered.

We assume that each FAP transmits with power P_F/K_F on each selected subchannel, while each MBS transmits with power P_M/K_M on each selected subchannel. By stationarity of the PPP, and since the subchannels are statistically identical, it suffices to analyze the behavior of a single typical receiving FMS and MMS [3]. We consider a propagation channel model with path-loss exponent $\alpha > 2$, and i.i.d fading across different selected subchannels. We also assume an interference - limited network, where thermal noise is negligible compared to the strong interference, which is a reasonable assumption in dense networks [5].

3. SPECTRUM SPLITTING

Here we consider the scenario where the spectrum is split between the femtocell and macrocell networks, eliminating cross-tier interference. At any receiving FMS, the locations of interfering FAPs form a homogeneous PPP with density λ_F [7]. Define $N_M := \nu L/K_M$ and $N_F := (1 - \nu)L/K_F$ such that $L = K_F N_F + K_M N_M$. Since the subchannels are randomly chosen (i.e., statistically identical), the density of FAPs using any single subchannel is thinned to $\tilde{\lambda}_F := \lambda_F/N_F$ [3]. Thus, the interference caused by all FAPs transmitting on a typical subchannel, incurred at a typical FMS that is using the same subchannel, is expressed as [6]:

$$I_F = \sum_{X_i \in \Pi_2(\tilde{\lambda}_F)} \frac{P_F}{K_F} h_i X_i^{-\alpha} \tag{1}$$

where X_i and h_i denote the distance and the fading channel power between the receiving FMS and the *i*-th interfering FAP, respectively, and $\Pi_2(\tilde{\lambda}_F)$ indicates the 2-D PPP describing the random interferer locations with density $\tilde{\lambda}_F$. The points of the 2-D PPP can be mapped to a 1-D PPP of unit intensity [8], yielding

$$I_F = (\tilde{\lambda}_F \pi)^{\alpha/2} \frac{P_F}{K_F} \sum_{T_i \in \Pi_1(1)} h_i T_i^{-\alpha/2}$$
(2)

where $\Pi_1(1)$ indicates a 1-D PPP of intensity 1 and T_i is the distance between the FMS and the *i*-th nearest interfering node in a unit intensity 1-D PPP.

Therefore, the receive-SIR at a typical FMS and typical subchannel is expressed as

$$_{F} = \frac{\frac{P_{F}}{K_{F}}h_{0}d_{F}^{-\alpha}}{I_{F}} = \frac{1}{Z_{\alpha}}\left(\frac{N_{F}}{d_{F}^{2}\lambda_{F}}\right)^{\alpha/2}$$
(3)

where h_0 denotes the channel power from the intended FAP to the FMS, and the random variable Z_{α} is defined as

$$Z_{\alpha} := \frac{\pi^{\alpha/2}}{h_0} \sum_{T_i \in \Pi_1(1)} h_i T_i^{-\alpha/2}.$$
 (4)

Similarly, the receive-SIR at a typical MMS/subchannel is given by

$$\gamma_M = \frac{1}{Z_\alpha} \left(\frac{N_M}{d_M^2 \lambda_M} \right)^{\alpha/2}.$$
 (5)

When adaptive modulation and coding is used to adapt the rate to the Shannon bound for the instantaneous SIR, the expected spectral efficiency across the network becomes an important performance metric. Our objective here is to find the optimal number of subchannels, K_F^* and K_M^* , and the optimal spectrum split ratio ν^* , that maximize the expected spectral efficiency for femtocells subject to a minimum macrocell expected spectral efficiency R_M^{\min} . This objective ensures fair coexistence [5]. Since the subchannels are statistically identical, and each FAP (and MBS) utilizes a fraction K_F/L (resp. K_M/L) of the bandwidth, the average spectral efficiencies (in bps/Hz) for femtocells and macrocells, respectively, are

$$R_F^{sp}(N_F,\nu) = \frac{(1-\nu)}{N_F} \mathbb{E}[\log_2(1+\gamma_F)], \qquad (6)$$

$$R_M^{sp}(N_M,\nu) = \frac{\nu}{N_M} \mathbb{E}[\log_2(1+\gamma_M)]. \tag{7}$$

It is more convenient to use $N_F \in [1, (1 - \nu)L]$ and $N_M \in [1, \nu L]$ instead of K_F and K_M , respectively, in the analysis. It is clear that as N_F increases, the bandwidth fraction $1/N_F$ utilized by each femto-user decreases on the one hand, but $\mathbb{E}[\gamma_F]$ increases on the other hand, resulting in a nontrivial bandwidth-SIR trade-off affecting R_F^{sp} as N_F increases. A similar tradeoff exists between R_M^{sp} and N_M . It is also clear that R_M^{sp} is linearly increasing with ν , whereas R_F^{sp} is linearly decreasing with ν . Note that there is no dependency between the optimal N_F^s that maximizes R_F^{sp} and ν , or between N_M^* that maximizes R_M^{sp} and ν , as long as $N_F \in [1, (1 - \nu)L]$ and $N_M \in [1, \nu L]$.

Although no closed-form solution for the maximized femtocell average spectral efficiency, R_F^{sp*} , subject to $R_M^{sp} \ge R_M^{\min}$, can be obtained, the following proposition gives (tight) upper and lower bounds on R_F^{sp*} . Define $\delta := \mathbb{E}[Z_{\alpha}^{-1}]$, $\eta := \frac{-\alpha/2}{\mathcal{W}(\frac{-\alpha}{2}e^{-\alpha/2})} - 1$, and $\beta := \mathbb{E}\left[\log_2\left(1 + \frac{\eta}{\delta Z_{\alpha}}\right)\right]$, where $\mathcal{W}(x)$ is the principle branch of the Lambert \mathcal{W} function that solves $\mathcal{W}(x)e^{\mathcal{W}(x)} = x$. Note that

given α and the channel distribution, the values of δ and β can be easily computed numerically via Monte-Carlo simulations. **Proposition 1.** The maximized femtocell average spectral efficiency.

$$R_F^{sp*} := \max_{\substack{\text{s.t. } R_M^{sp}(N_H,\nu) \ge R_M^{min}}} R_F^{sp}(N_F,\nu) \tag{8}$$

is bounded as:

$$\frac{(1-\nu_{ub}^*)}{\tilde{N}_F}\beta \le R_F^{sp*} \le \frac{(1-\nu_{lb}^*)}{\tilde{N}_F}\log_2(1+\eta)$$
(9)

and the optimal split ratio is bounded as $\nu_{lb}^* \leq \nu^* \leq \nu_{ub}^*$, where,

$$\nu_{ub}^* := R_M^{\min} \frac{N_M}{\beta}, \ \nu_{lb}^* := R_M^{\min} \frac{N_M}{\log_2(1+\eta)},$$
$$\tilde{N}_F := d_F^2 \lambda_F \left(\frac{\eta}{\delta}\right)^{2/\alpha}, \ \tilde{N}_M := d_M^2 \lambda_M \left(\frac{\eta}{\delta}\right)^{2/\alpha},$$

assuming $N_F \in [1, (1 - \nu^*)L]$ and $N_M \in [1, \nu^*L]$.

Proof. Using Jensen's inequality, we obtain the upper bounds:

 $R_F^{sp} \leq \frac{(1-\nu)}{N_F} \log_2(1+\mathbb{E}[\gamma_F]), \ R_M^{sp} \leq \frac{\nu}{N_M} \log_2(1+\mathbb{E}[\gamma_M])$ To find N_F that maximizes the upper bound of R_F^{sp} , define $\rho := \delta(d_F^2\lambda_F)^{-\alpha/2}$, then differentiate $\frac{1}{N_F} \log_2(1+\rho N_F^{\alpha/2})$ with respect to N_F and equate to zero to get: $\frac{\alpha}{2}\rho N_F^{\alpha/2} = (\rho N_F^{\alpha/2} + 1) \log_e(\rho N_F^{\alpha/2} + 1)$

$$2^{pr_F} (\rho + r) \log_e(\rho + r) + 2)$$

Defining $\tilde{\rho} := \frac{-\alpha/2}{\rho N_F^{\alpha/2} + 1}$, we get $-\frac{\alpha}{2} e^{-\alpha/2} = \tilde{\rho} e^{\tilde{\rho}}$. Using the Lambert \mathcal{W} function gives $\tilde{\rho} = \mathcal{W} \left(-\frac{\alpha}{2} e^{-\alpha/2}\right)$. Then, solving for N_F yields \tilde{N}_F (i.e., \tilde{N}_F maximizes the upper bound on R_F^{sp}). Similarly, \tilde{N}_M that maximizes the upper bound on R_F^{sp} is obtained.

Due to the independence between ν and the optimal N_M^* that maximizes R_M^{sp} , and since R_F^{sp} is monotonically decreasing with ν , this means that $\max_{N_M} R_M^{sp}(N_M, \nu^*) = R_M^{\min}$. Using

$$\max_{N_M} R_M^{sp}(N_M, \nu^*) \le \max_{N_M} \frac{\nu^*}{N_M} \log_2(1 + \mathbb{E}[\gamma_M(N_M)]), \quad (10)$$

and solving for ν^* using N_M (which maximizes the RHS of the inequality), the lower bound ν_{lb}^* is obtained. The upper bound ν_{ub}^* can similarly be obtained from:

$$\max_{N_M} R_M^{sp}(N_M, \nu^*) \ge \frac{\nu^*}{\tilde{N}_M} \mathbb{E}[\log_2(1 + \gamma_M(\tilde{N}_M))]$$
(11)

and solving for ν^* . Finally, the upper and lower bounds on R_F^{sp*} are obtained using similar bounds as (10) and (11), respectively.

It is clear from proposition 1 that ν^* increases linearly with λ_M and R_M^{\min} , and that R_F^{sp*} is inversely proportional to λ_F . Numerous simulations have shown that the lower bound in (9) is tight, and that \tilde{N}_F and \tilde{N}_M are very close approximations to the optimal N_F^* and N_M^* , respectively. This implies that K_F^* is inversely proportional to λ_F and d_F^2 (in addition to the linear decrease with ν^*), whereas K_M^* depends on R_M^{\min} only (linearly increases with R_M^{\min}). For example, if λ_M doubles, then ν^* and N_M^* also double, such that the average macrocell interference and $\mathbb{E}[\gamma_M]$ do not change, and thus achieving R_M^{\min} with the same K_M^* . On the other hand, if λ_F doubles, then K_F^* and R_F^{sp*} decrease by half, while the average femtocell interference and $\mathbb{E}[\gamma_F]$ remain unchanged. Note that if the computed $\tilde{N}_M \notin$ $[1, \nu^*L]$, substituting with its nearest boundary value in (10) and (11) yields the modified bounds for ν^* . The bounds for R_F^{sp*} if $\tilde{N}_F \notin [1, (1 - \nu^*)L]$ can be similarly obtained.

4. SPECTRUM SHARING

Here we consider the scenario where the macrocells and femtocells share the same spectrum. Redefine $N_M := L/K_M$ and $N_F :=$ L/K_F . It is well known that the superposition of two independent PPPs of densities λ_1 and λ_2 is equivalent to a single PPP of density $\lambda_1 + \lambda_2$ [3]. Also, it is easy to verify that the interference caused by 2-D PPP interferers of density λ with transmission power P is equivalent to the interference caused by 2-D PPP interferers of density $\lambda P^{2/\alpha}$ and unit transmission power. Thus, the interference caused by MBSs and FAPs transmitting on a typical subchannel at a typical receiver (MMS or FMS) is (temporarily ignoring fading):

$$I_F + I_M = \sum_{X_i \in \Pi_2(\bar{\lambda}_F)} \frac{P_F}{K_F} X_i^{-\alpha} + \sum_{Y_i \in \Pi_2(\bar{\lambda}_M)} \frac{P_M}{K_M} Y_i^{-\alpha}$$
$$= \sum_{X_i \in \Pi_2(\bar{\lambda}_F)} X_i^{-\alpha} + \sum_{Y_i \in \Pi_2(\bar{\lambda}_M)} Y_i^{-\alpha}$$
$$= \sum_{X_i \in \Pi_2(\bar{\lambda}_F + \bar{\lambda}_M)} X_i^{-\alpha} = (\bar{\lambda}_F \pi + \bar{\lambda}_M \pi)^{\alpha/2} \sum_{T_i \in \Pi_1(1)} T_i^{-\alpha/2}$$

where $\bar{\lambda}_F := \frac{\lambda_F}{N_F} \left(\frac{P_F}{K_F}\right)^{2/\alpha}$ and $\bar{\lambda}_M := \frac{\lambda_M}{N_M} \left(\frac{P_M}{K_M}\right)^{2/\alpha}$. Hence, the receive-SIRs at a typical FMS and a typical MMS, respectively, are (with fading):

$$\gamma_F = \frac{P_F N_F d_F^{\alpha}}{Z_{\alpha} \left(\lambda_F P_F^{\frac{2}{\alpha}} N_F^{\frac{2}{\alpha}-1} + \lambda_M P_M^{\frac{2}{\alpha}} N_M^{\frac{2}{\alpha}-1}\right)^{\alpha/2}}$$
(12)

$$\gamma_{M} = \frac{P_{M} N_{M} d_{M}^{-\alpha}}{Z_{\alpha} \left(\lambda_{F} P_{F}^{\frac{2}{\alpha}} N_{F}^{\frac{2}{\alpha}-1} + \lambda_{M} P_{M}^{\frac{2}{\alpha}} N_{M}^{\frac{2}{\alpha}-1}\right)^{\alpha/2}}$$
(13)

where the random variable Z_{α} is defined in (4).

Similar to the previous section, we consider the following optimization objective: for a minimum macrocell average spectral efficiency constraint R_M^{\min} , find K_F^* and K_M^* that maximize the femtocell average spectral efficiency. The expected spectral efficiency expression for femtocells is $R_F^{sh}(N_M, N_F) = \frac{1}{N_F} \mathbb{E}[\log_2(1 + \gamma_F)]$, and for macrocells is $R_M^{sh}(N_M, N_F) = \frac{1}{N_M} \mathbb{E}[\log_2(1 + \gamma_M)]$. It is clear that R_F^{sh} and R_M^{sh} are increasing in N_M and N_F , respectively, due to the decreased cross-tier interference in each case. On the other hand, as N_F increases for a fixed N_M , the average $\mathbb{E}[\gamma_F]$ increases (due to the decreased femto-to-femto interference), but the bandwidth ratio $1/N_F$ utilized by each femto-user decreases, resulting in a nontrivial bandwidth-SIR trade-off affecting R_F^{sh} as N_F increases. A similar tradeoff exists between R_M^{sh} and N_M . Here the coupling between N_M and N_F adds to the complexity of the problem, in contrast to the case of spectrum splitting.

To simplify the analysis, we assume that the macrocell network density is negligible compared to the femtocell density, such that the interference caused by MBSs is negligible compared to the interference caused by FAPs. In this case, R_M^{sh} is decreasing in N_M , while R_F^{sh} no longer depends on N_M . Thus, it is optimal to operate using

the minimal
$$N_M$$
 (i.e., $N_M^* = 1$). Define $\sigma := \left(\lambda_F d_F^2 \frac{P_F d_F^{-\alpha}}{P_M d_M^{-\alpha}}\right)^{\frac{2}{\alpha-2}}$,
 $\mu := 2^{\frac{2}{\alpha-2} \left(R_M^{\min} + \mathbb{E}[\log_2 Z_\alpha]\right)}, \psi := \left(\frac{2^{R_M^{\min}}}{\delta}\right)^{\frac{2}{\alpha-2}}, \omega_u := \frac{(\eta/\delta)^{\frac{2}{\alpha}}}{\psi}$

and $\omega_l := \frac{(\eta/\delta)\alpha}{\mu}$, where μ , ψ , ω_l , and ω_u can be computed via Monte-Carlo simulations given α , R_M^{\min} , and the fading distribution, with no dependency on the femtocell or macrocell network parameters. The following proposition gives an upper and a lower bound on the maximized femtocell average spectral efficiency, R_F^{sh*} , subject to $R_M^{sh} \ge R_M^{\min}$, neglecting the interference from MBSs.

Proposition 2. Assuming that the interference from MBSs is negligible ($I_M \ll I_F$), the maximized femtocell average spectral efficiency, $R_F^{sh*} := \max R_F^{sh}(N_F)$ (14)

$$R_F^{\text{intw}} := \max_{\text{s.t. } R_M^{\text{sh}}(N_F) \ge R_M^{\min}} R_F^{\text{int}}(N_F)$$
(14)

is bounded as follows: (a) If $\sigma > \omega_u + \epsilon$, then

$$\frac{1}{N_F^{ub}} \mathbb{E}\left[\log_2\left(1 + \frac{(\mu\sigma)^{\frac{\alpha}{2}}}{Z_{\alpha}}\right)\right] \le R_F^{sh*}$$
$$\le \frac{1}{N_F^{lb}} \mathbb{E}\left[\log_2\left(1 + \frac{(\psi\sigma)^{\frac{\alpha}{2}}}{Z_{\alpha}}\right)\right]$$
(15)

and $N_F^{lb} \leq N_F^* \leq N_F^{ub}$, where

$$N_{F}^{ub} := \mu \left[\frac{P_{F}}{P_{M}} (d_{M}^{2} \lambda_{F})^{\frac{\alpha}{2}} \right]^{\frac{2}{\alpha-2}}, N_{F}^{lb} := \psi \left[\frac{P_{F}}{P_{M}} (d_{M}^{2} \lambda_{F})^{\frac{\alpha}{2}} \right]^{\frac{2}{\alpha-2}}$$

$$(b) \text{ If } \sigma \leq \omega_{l} - \epsilon, \text{ then}$$

$$\frac{1}{\tilde{N}_{F}} \beta \leq R_{F}^{sh*} \leq \frac{1}{\tilde{N}_{F}} \log_{2}(1+\eta) \quad (16)$$

where $\tilde{N}_F = d_F^2 \lambda_F \left(\frac{\eta}{\delta}\right)^{2/\alpha}$, and ϵ is a small constant.

Proof. First, note that $N_M^* = 1$ with negligible interference form MBSs, and that R_F^{sh} is monotonically increasing with N_F , whereas R_F^{sh} is increasing with N_F up to a maximum value, then decreasing as N_F further increases. Using Jensen's inequality to upper bound $R_M^{\min} \leq R_M^{sh}(1, N_F) \leq \log_2(1 + \mathbb{E}[\gamma_M])$ and solving for N_F yields N_F^{lb} as a lower bound on N_F . No closed form analytic solution can be obtained for $N_F^{(uc)}$ that maximizes R_F^{sh} without the constraint $R_M^{sh} \geq R_M^{\min}$. Instead, we maximize its upper bound obtained using Jensen's inequality, which gives \tilde{N}_F . The derivation steps are

similar to the ones in the proof of proposition 1. Exhaustive numerical results have shown the tightness of \tilde{N}_F as an approximation for $N_F^{(uc)}$, i.e., $|\tilde{N}_F - N_F^{(uc)}| < \tilde{\epsilon}$, where $\tilde{\epsilon}$ is a small constant.

So long as $N_F^{lb} \geq \tilde{N}_F + \tilde{\epsilon}$, the optimal N_F^* (with the $R_M^{sh} \geq R_M^{\min}$ constraint) is guaranteed to be larger than N_F^{lb} . The condition $N_F^{lb} \geq \tilde{N}_F + \tilde{\epsilon}$ is equivalent to $\sigma \geq \omega_u + \epsilon$, where ϵ is a small (positive) constant that accounts for the difference between the optimum $N_F^{(uc)}$ and its approximation \tilde{N}_F . In this case N_F^* satisfies $R_M^{sh}(N_F^*) = R_M^{\min}$ and an upper bound on N_F^* , N_F^{ub} , can be obtained from $R_M^{sh}(N_F^*) \geq \mathbb{E}\left[\log_2\left(\frac{P_M d_M^{-\alpha} N_F^{-\frac{\alpha}{2}}}{Z_\alpha P_F \lambda_F^{\frac{\alpha}{2}}}\right)\right]$, where solving for N_F yields N_F^{ub} . Substituting with N_F^{lb} and N_F^{ub} in R_F^{sh} yield the bounds given in (15). On the other hand, so long as $N^{ub} \leq \tilde{N}_F - \tilde{\epsilon}$ the optimum N^* is $N^{(uc)}$ that maximizes R^{sh}

as $N_F^{(uc)} \leq \tilde{N}_F - \tilde{\epsilon}$, the optimal N_F^* is $N_F^{(uc)}$ that maximizes R_F^{sh} , with no constraint. This condition is equivalent to $\sigma \leq \omega_l - \epsilon$. The bounds (16) are obtained following the proof of proposition 1.

Note that taking the interference from MBSs into consideration decreases R_F^{sh*} , which means that the upper bounds in (15) and (16) are also valid for the general case. According to proposition 2, we say that the network is operating in the *strong-femto-interference regime* if the network parameters satisfy $\sigma \geq \omega_u + \epsilon$, while the network is said to be operating in the *weak-femto-interference regime* if the network parameters satisfy $\sigma \leq \omega_l - \epsilon$. The proposition shows that in the strong-femto-interference regime, the optimal number of subchannels K_F^* grows with the ratio $(P_M/P_F)^{\frac{2}{\alpha-2}}$, and with $(1/\lambda_F)^{\frac{\alpha}{\alpha-2}}$, whereas K_F^* grows only with $1/\lambda_F$ in the weak-femto-interference regime.

Intuitively, the number of subchannels K_F^* is restricted to be small by the macrocell network parameters in the strong-femto- interference regime, so that macro-users can achieve R_M^{\min} (since larger K_F^* imply larger I_F). On the other hand, in the weak-femto- interference regime, the number of subchannels K_F^* optimizes the bandwidth-SIR tradeoff for the femtocell network, irrespective of the macrocell network parameters; this K_F^* is sufficiently small allowing macro-users achieve R_M^{\min} . Note that increasing R_M^{\min} decreases ω_u and ω_l , implying that the network switches to the strong-femtointerference regime at a smaller σ . Numerous simulations indicated the tightness of the upper bound of (15), and that N_F^{ub} is a close approximation to N_F^* for $\sigma \geq \omega_u$. This, in addition to the results of proposition 1, imply that N_F and the lower bound of (16) are close approximations to N_F^* and R_F^{sh*} , respectively, for $\sigma < \omega_u$.

5. SPLITTING VS. SHARING

In this section, we compare between the maximized femtocell average spectral efficiency with spectrum splitting and with spectrum sharing, when there is a constraint on the macrocell average spectral efficiency. Define the spectral efficiency ratio $\zeta := R_F^{sp*}/R_F^{sh*}$.

For negligible macrocell interference $(\lambda_M \ll \lambda_F)$ and small $\sigma \leq \omega_l - \epsilon$, it is easy to see from propositions 1 and 2 that $\zeta = \tilde{\nu} \leq 1$, where $\tilde{\nu} := (1 - \nu^*)$, and that ζ is independent of σ in that region (for fixed d_M). Note that $\tilde{\nu} \approx 1$ for small λ_M . This means that for the weak-femto-interference regime (i.e., small λ_F or small $\frac{P_F d_F^{-\alpha}}{P_M d_M^{-\alpha}}$), the performance with spectrum sharing is approximately the same as (slightly better than) the performance with spectrum splitting. On the other hand, lower and upper bounds on ζ at the strong-femto-interference regime are obtained by cross-dividing

Fig. 1. Numerically computed ζ and its theoretical bounds vs. σ .

the bounds on R_F^{sp*} from (9) by the bounds on R_F^{sh*} from (15):

$$\frac{\sigma \,\tilde{\nu}\beta/\omega_u}{\mathbb{E}\left[\log_2\left(1+\frac{(\psi\sigma)^{\frac{\alpha}{2}}}{Z_\alpha}\right)\right]} \le \zeta \le \frac{\sigma \,\tilde{\nu}\log_2(1+\eta)/\omega_l}{\mathbb{E}\left[\log_2\left(1+\frac{(\mu\sigma)^{\frac{\alpha}{2}}}{Z_\alpha}\right)\right]} \quad (17)$$

Next, we show that ζ is increasing with σ for sufficiently large σ . It is easy to see that the upper and lower bounds on ζ are both increasing with $\sigma/\log_2(\sigma)$ for large σ . Since $\lim_{\sigma\to\infty} \sigma/\log_2(\sigma) = \infty$, this implies that there exists a certain threshold, σ_0 , where ζ is guaranteed to be monotonically increasing with σ for $\sigma \ge \sigma_0$. Note that the lower bound in (17) is obtained by ignoring interference from MBSs with spectrum sharing, and hence it is also valid for the general case. This shows that it is better to split the spectrum between macrocells and femtocells for large σ , where the performance advantage with spectrum splitting increases as σ further increases.

In Fig. 1, we considered a network with L = 1000 subcarriers, $\lambda_M = 10^{-6}$ MBSs/m² (1 MBS per Km²), $\lambda_F = 2 \times 10^{-3}$ FAPs/m², $d_F = 15$ m, $d_M = 100$ m, $R_M^{\min} = 0.5$ bps/Hz, $\alpha = 5$ (typically between 4 and 6 indoors), $P_M = 50$ dBm, and i.i.d Rayleigh fading channel. The figure shows the relation between ζ and σ , where σ is increased by increasing P_F from 0 dBm to 50 dBm. The values of R_F^{sps} and R_F^{shs} were numerically optimized to compute the ratio ζ , where the expectations with respect to random locations and fading were numerically computed via more than 10^4 Monte-Carlo simulation runs. The lower (dotted line) and upper (dashed line) bounds on ζ are also plotted for $\sigma \ge \omega_u$. The figure shows that $\zeta \approx 1$ for $\sigma < \omega_u$ (i.e., weak-femto-interference regime) whereas it is increasing with σ for $\sigma \ge \omega_u$ (i.e., strong-femto-interference regime). The increase of ζ with $\sigma / \log_2(\sigma)$ for large σ is also apparat in the figure. For typical $P_F = 30$ dBm ($\sigma = 15.2 > \omega_u$), the optimal $\nu^* = 0.053$, $K_F^* = 305$, and $K_M^* = 53$ yield $R_F^{sp*} = 0.58$ bps/Hz with spectrum splitting, whereas the optimal $K_F^* = 30$ and $K_M^* = 830$ yield $R_F^{sh*} = 0.25$ bps/Hz with spectrum sharing.

The relation between ζ and σ can be intuitively explained as follows. In the weak-femto-interference regime, the decrease of R_F^{sh*} due to the interference on FMSs from MBSs with spectrum sharing is approximately equivalent to the decrease of R_F^{sp*} due to reserving a portion of the spectrum for macro-users. As σ increases to the strong-femto-interference regime, the constraint R_M^{min} restricts K_F to a small value to control the femto-to-macro interference, resulting in a decreased R_F^{sh*} , whereas there is no such restriction on K_F when the spectrum is split, resulting in a relatively larger R_F^{sp*} .

6. CONCLUSIONS

We have characterized the number of utilized subchannels that maximizes the ergodic spectral efficiency for femtocells, subject to a minimum ergodic spectral efficiency constraint for macrocells, when coexisting femtocells and macrocells share, or split, the spectrum in an OFDMA setting. The provided analysis shows that it is generally better to assign separate portions of the spectrum to the macro- and femtocell networks, rather than using the same subchannels.

7. REFERENCES

- D. Lopez-Perez, A. Valcarce, G. de la Roche, and J. Zhang, "OFDMA femtocells: a roadmap on interference avoidance," IEEE Commun. Mag., vol. 47, no. 9, pp. 41–48, Sept. 2009.
- [2] S. Rangan, "Femto-macro cellular interference control with subband scheduling and interference cancelation," submitted to IEEE Trans. Wireless Comm., preprint arXiv:1007.0507, July 2010.
- [3] M. Haenggi, J.G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, "Stochastic geometry and random graphs for the analysis and design of wireless networks," IEEE Journal on Sel. Areas in Comm., vol. 27, no. 7, pp. 1029–1046, 2009.
- [4] H. Dhillon, R. Ganti, F. Baccelli and J. Andrews, "Modeling and analysis of K-tier downlink heterogeneous cellular networks," *IEEE Journal on Sel. Areas in Comm.*, vol. 30, no. 3, pp. 550– 560, April 2012.
- [5] J. Lee, J. Andrews, and D. Hong, "Spectrum-sharing transmission capacity," IEEE Transactions on Wireless Communications, vol. 10, no. 9, pp. 3053–3063, Sept. 2011.
- [6] N. Jindal, J. Andrews and S. Weber, "Bandwidth partitioning in decentralized wireless networks," IEEE Trans. Wireless Communications, vol. 7, no. 12, pp. 5408–5419, Dec. 2008.
- [7] D. Stoyan, W. Kendall, and J. Mecke, *Stochastic Geometry and its Applications*, John Wiley and Sons, 1996.
- [8] M. Haenggi, "On distances in uniformly random networks," IEEE Trans. on Information Theory, vol. 51, no. 10, pp. 3584– 3586, Oct. 2005.