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ABSTRACT

A network comprised of high-density femtocells coexisting with low-
density macrocells, in an orthogonal frequency-division multiple ac-
cess (OFDMA) setting, is considered. Two approaches are investi-
gated: (1) spectrum sharing where macrocells and femtocells can ac-
cess the same subchannels, and (2) spectrum splitting where macro-
cells and femtocells access separate portions of the spectrum. In
both approaches, the trade-off between the utilized bandwidth and
the signal-to-interference ratio (SIR), as femtocells or macrocells
access more subchannels, is studied. The number of utilized sub-
channels that maximizes the average spectral efficiency for femto-
cells, subject to a minimum average spectral efficiency constraint
for macrocells, is analyzed for both approaches, showing that the
performance with spectrum splitting is better than spectrum sharing,
for the considered model.

1. INTRODUCTION

Femtocell access points (FAPs) are short range, low cost, and low
power base stations, installed by end-users for better indoor sig-
nal transmission and reception, coexisting with the macro-cellular
network, and utilizing the same spectrum. Managing the cross-tier
femto-macro interference is a fundamental challenge that limits the
‘cohabitation dividend’, and thus the appeal of large-scale femto de-
ployment and integration with the cellular infrastructure. The cur-
rently dominant wireless standards (LTE and WiMAX) divide the
available spectrum into orthogonal subchannels (i.e., OFDMA). This
facilitates bandwidth splitting between femtocells and macrocells,
possibly easing coexistence at the expense of limiting individual
rates and aggressive spatial reuse. The goal of this work is to study
this trade-off from the viewpoint of average spectral efficiency.

In [1], a coverage and interference analysis based on a realistic
OFDMA macro/femtocell scenario is provided, assuming that FAPs
are aware of the presence of neighboring macro- and femtocells, as
well as their respective spectrum allocations. A different interfer-
ence control method is proposed in [2], where femtocells adaptively
allocate their power across the subchannels based on a load-spillage
power control method. However, the overhead associated with ac-
quiring information about neighboring cells in [1] and [2] is pro-
hibitive in high density, random, and dynamic femtocell networks.

Instead of traditional network planning and optimization tech-
niques, random Poisson point process (PPP) models have been re-
cently used to model random wireless networks, and provide tractable
and accurate analysis [3, 4, 5, 6]. In [4], a PPP model is used to
model K tiers of randomly located base stations (BSs) and develop
tractable analysis for the coverage probability, where it is assumed
that an arbitrary mobile user can connect to any BS if it provides
the strongest signal. A similar model was considered in [5], where
it is shown that it is generally preferred that each of the coexisting
systems utilizes its own assigned spectrum, rather than allowing all
systems to concurrently use the whole spectrum. The analysis in [4]
and [5] assumed a single, indivisible channel; the additional degree
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of freedom associated with multiple frequency subchannels was not
considered. On the other hand, the number of subbands partitioning
the bandwidth that maximizes the spatial density of transmissions,
with a constraint on the outage probability, was characterized in [6]
for a single tier ad-hoc network. The analysis in [6] does not include
the additional complexity associated with multiple coexisting net-
works. Another important difference between our work and [4, 5, 6]
is that we consider a setting in which the transmission rate is adapted
to the instantaneous SIR, and thus the average spectral efficiency is
more appropriate than the transmission capacity, which is pertinent
in fixed-rate scenarios, as a performance metric.

In this work, we model the locations of FAPs and macro base
stations (MBSs) using PPPs in an OFDMA setting, and analyze the
performance of two main approaches: (1) spectrum sharing where
macrocells and femtocells can access the same subchannels, and (2)
spectrum splitting where macrocells and femtocells access separate
portions of the spectrum. It is clear that cross-tier interference lim-
its the performance with spectrum sharing, whereas macrocells and
femtocells sacrifice a portion of the spectrum to eliminate the cross-
tier interference with spectrum splitting. In both cases, there is a
trade-off in spectral efficiency between the utilized bandwidth and
the signal-to-interference ratio (SIR), as femtocells or macrocells ac-
cess more subchannels.We study this trade-off and characterize the
number of subchannels accessed by femtocells and macrocells to
maximize the average spectral efficiency for femtocells subject to a
minimum average spectral efficiency constraint for macrocells, thus
ensuring fair coexistence [5]. We show that the ratio between the
maximized femtocell average spectral efficiency with spectrum shar-
ing and with spectrum splitting is increasing (above one) as the ratio
between the femtocell transmit-power and the macrocell transmit-
power, or the femtocell density, increases. Hence, this work shows
that it is generally better to assign separate portions of the spectrum
to macrocells and femtocells, rather than sharing the same subchan-
nels, for the considered model.

2. NETWORK MODEL

We consider a downlink scenario, where the random locations of
FAPs are modeled as a realization of a homogeneous PPP of inten-
sity λF on the 2-D plane. MBS locations are also modeled as a real-
ization of a PPP with a smaller intensity λM [4]. We assume a closed
access system, where at each time instance, each FAP communicates
with a single femto mobile station (FMS) that is at distance dF me-
ters away, and each MBS communicates with a single macro mobile
station (MMS) that is at distance dM meters away. The fixed dis-
tance assumption can be easily relaxed to account for any random
distance distribution [5]. A similar model can be used for the uplink
scenario; the downlink case is considered for clarity of exposition.

A total bandwidth of W Hz is divided into L equal orthogo-
nal subchannels of W/L Hz each, as in OFDM. When the spec-
trum sharing approach is adopted, macrocells and femtocells have
access to the same subchannels. In this case, each MBS randomly
selects KM ∈ {1, . . . , L} subchannels for transmission, while each
FAP randomly selects KF ∈ {1, . . . , L} subchannels for transmis-
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sion. The received signal at any FMS or MMS, at any subchannel,
suffers from interference from all (non-intended) FAPs and MBSs
transmitting on the same subchannel. On the other hand, when the
spectrum splitting approach is used, the spectrum is split between
macrocells and femtocells such that νL subchannels are allocated
for macrocells, while (1 − ν)L subchannels are allocated to femto-
cells, where 0 ≤ ν ≤ 1. In this case, each MBS randomly selects
KM ∈ {1, . . . , νL} subchannels for transmission while each FAP
randomly selects KF ∈ {1, . . . , (1 − ν)L} subchannels for trans-
mission. The random subchannel selection approach is simple, an-
alytically tractable, and practically appealing [6]. The coordination
overhead that is necessary for a more intelligent subchannel alloca-
tion scheme is prohibitive in the dense and dynamic environment
that is considered.

We assume that each FAP transmits with power PF /KF on
each selected subchannel, while each MBS transmits with power
PM/KM on each selected subchannel. By stationarity of the PPP,
and since the subchannels are statistically identical, it suffices to an-
alyze the behavior of a single typical receiving FMS and MMS [3].
We consider a propagation channel model with path-loss exponent
α > 2, and i.i.d fading across different selected subchannels. We
also assume an interference - limited network, where thermal noise
is negligible compared to the strong interference, which is a reason-
able assumption in dense networks [5].

3. SPECTRUM SPLITTING

Here we consider the scenario where the spectrum is split between
the femtocell and macrocell networks, eliminating cross-tier interfer-
ence. At any receiving FMS, the locations of interfering FAPs form
a homogeneous PPP with density λF [7]. Define NM := νL/KM

and NF := (1 − ν)L/KF such that L = KFNF + KMNM .
Since the subchannels are randomly chosen (i.e., statistically iden-
tical), the density of FAPs using any single subchannel is thinned
to λ̃F := λF /NF [3]. Thus, the interference caused by all FAPs
transmitting on a typical subchannel, incurred at a typical FMS that
is using the same subchannel, is expressed as [6]:

IF =
∑

Xi∈Π2(λ̃F )

PF
KF

hiX
−α
i (1)

where Xi and hi denote the distance and the fading channel power
between the receiving FMS and the i-th interfering FAP, respectively,
and Π2(λ̃F ) indicates the 2-D PPP describing the random interferer
locations with density λ̃F . The points of the 2-D PPP can be mapped
to a 1-D PPP of unit intensity [8], yielding

IF = (λ̃Fπ)
α/2 PF

KF

∑
Ti∈Π1(1)

hiT
−α/2
i (2)

where Π1(1) indicates a 1-D PPP of intensity 1 and Ti is the dis-
tance between the FMS and the i-th nearest interfering node in a
unit intensity 1-D PPP.

Therefore, the receive-SIR at a typical FMS and typical sub-
channel is expressed as

γF =

PF
KF

h0d
−α
F

IF
=

1

Zα

(
NF
d2FλF

)α/2
(3)

where h0 denotes the channel power from the intended FAP to the
FMS, and the random variable Zα is defined as

Zα :=
πα/2

h0

∑
Ti∈Π1(1)

hiT
−α/2
i . (4)

Similarly, the receive-SIR at a typical MMS/subchannel is given by

γM =
1

Zα

(
NM
d2MλM

)α/2
. (5)

When adaptive modulation and coding is used to adapt the rate
to the Shannon bound for the instantaneous SIR, the expected spec-
tral efficiency across the network becomes an important performance
metric. Our objective here is to find the optimal number of sub-
channels, K∗

F and K∗
M , and the optimal spectrum split ratio ν∗, that

maximize the expected spectral efficiency for femtocells subject to a
minimum macrocell expected spectral efficiency Rmin

M . This objec-
tive ensures fair coexistence [5]. Since the subchannels are statisti-
cally identical, and each FAP (and MBS) utilizes a fraction KF /L
(resp. KM/L) of the bandwidth, the average spectral efficiencies (in
bps/Hz) for femtocells and macrocells, respectively, are

RspF (NF , ν) =
(1− ν)

NF
E[log2(1 + γF )], (6)

RspM (NM , ν) =
ν

NM
E[log2(1 + γM )]. (7)

It is more convenient to use NF ∈ [1, (1− ν)L] and NM ∈ [1, νL]
instead of KF and KM , respectively, in the analysis. It is clear
that as NF increases, the bandwidth fraction 1/NF utilized by each
femto-user decreases on the one hand, but E[γF ] increases on the
other hand, resulting in a nontrivial bandwidth-SIR trade-off affect-
ing RspF as NF increases. A similar tradeoff exists between RspM and
NM . It is also clear that RspM is linearly increasing with ν, whereas
RspF is linearly decreasing with ν. Note that there is no dependency
between the optimalN∗

F that maximizesRspF and ν, or betweenN∗
M

that maximizes RspM and ν, as long as NF ∈ [1, (1 − ν)L] and
NM ∈ [1, νL].

Although no closed-form solution for the maximized femtocell
average spectral efficiency, Rsp∗F , subject to RspM ≥ Rmin

M , can be
obtained, the following proposition gives (tight) upper and lower
bounds on Rsp∗F . Define δ := E[Z−1

α ], η := −α/2
W(−α

2
e−α/2)

− 1,

and β := E
[
log2

(
1 + η

δZα

)]
, where W(x) is the principle branch

of the Lambert W function that solves W(x)eW(x) = x. Note that
given α and the channel distribution, the values of δ and β can be
easily computed numerically via Monte-Carlo simulations.
Proposition 1. The maximized femtocell average spectral efficiency,

Rsp∗F := max
s.t. R

sp
M

(NM ,ν)≥Rmin
M

RspF (NF , ν) (8)

is bounded as:
(1− ν∗ub)

ÑF
β ≤ Rsp∗F ≤ (1− ν∗lb)

ÑF
log2(1 + η) (9)

and the optimal split ratio is bounded as ν∗lb ≤ ν∗ ≤ ν∗ub, where,

ν∗ub := Rmin
M

ÑM
β
, ν∗lb := Rmin

M
ÑM

log2(1 + η)
,

ÑF := d2FλF
(η
δ

)2/α
, ÑM := d2MλM

(η
δ

)2/α
,

assuming ÑF ∈ [1, (1− ν∗)L] and ÑM ∈ [1, ν∗L].

Proof. Using Jensen’s inequality, we obtain the upper bounds:

RspF ≤ (1− ν)

NF
log2(1 + E[γF ]) , RspM ≤ ν

NM
log2(1 + E[γM ])

To find NF that maximizes the upper bound of RspF , define ρ :=

δ(d2FλF )
−α/2, then differentiate 1

NF
log2(1+ρN

α/2
F ) with respect

to NF and equate to zero to get:
α

2
ρN

α/2
F = (ρN

α/2
F + 1) loge(ρN

α/2
F + 1)

Defining ρ̃ := −α/2
ρN

α/2
F

+1
, we get −α

2
e−α/2 = ρ̃eρ̃. Using the Lam-

bert W function gives ρ̃ = W
(
−α

2
e−α/2

)
. Then, solving for NF

yields ÑF (i.e., ÑF maximizes the upper bound on RspF ). Similarly,
ÑM that maximizes the upper bound on RspM is obtained.

4825



Due to the independence between ν and the optimal N∗
M that

maximizes RspM , and since RspF is monotonically decreasing with ν,
this means that maxNM RspM (NM , ν

∗) = Rmin
M . Using

max
NM

RspM (NM , ν
∗) ≤ max

NM

ν∗

NM
log2(1 + E[γM (NM )]), (10)

and solving for ν∗ using ÑM (which maximizes the RHS of the
inequality), the lower bound ν∗lb is obtained. The upper bound ν∗ub
can similarly be obtained from:

max
NM

RspM (NM , ν
∗) ≥ ν∗

ÑM
E[log2(1 + γM (ÑM ))] (11)

and solving for ν∗. Finally, the upper and lower bounds on Rsp∗F are
obtained using similar bounds as (10) and (11), respectively.

It is clear from proposition 1 that ν∗ increases linearly with λM
and Rmin

M , and that Rsp∗F is inversely proportional to λF . Numerous
simulations have shown that the lower bound in (9) is tight, and that
ÑF and ÑM are very close approximations to the optimal N∗

F and
N∗
M , respectively. This implies that K∗

F is inversely proportional to
λF and d2F (in addition to the linear decrease with ν∗), whereasK∗

M

depends on Rmin
M only (linearly increases with Rmin

M ). For example,
if λM doubles, then ν∗ and N∗

M also double, such that the average
macrocell interference and E[γM ] do not change, and thus achieving
Rmin
M with the sameK∗

M . On the other hand, if λF doubles, thenK∗
F

and Rsp∗F decrease by half, while the average femtocell interference
and E[γF ] remain unchanged. Note that if the computed ÑM ̸∈
[1, ν∗L], substituting with its nearest boundary value in (10) and
(11) yields the modified bounds for ν∗. The bounds for Rsp∗F if
ÑF ̸∈ [1, (1− ν∗)L] can be similarly obtained.

4. SPECTRUM SHARING

Here we consider the scenario where the macrocells and femtocells
share the same spectrum. Redefine NM := L/KM and NF :=
L/KF . It is well known that the superposition of two independent
PPPs of densities λ1 and λ2 is equivalent to a single PPP of density
λ1 + λ2 [3]. Also, it is easy to verify that the interference caused by
2-D PPP interferers of density λwith transmission power P is equiv-
alent to the interference caused by 2-D PPP interferers of density
λP 2/α and unit transmission power. Thus, the interference caused
by MBSs and FAPs transmitting on a typical subchannel at a typical
receiver (MMS or FMS) is (temporarily ignoring fading):

IF + IM =
∑

Xi∈Π2

(
λF
NF

)
PF
KF

X−α
i +

∑
Yi∈Π2

(
λM
NM

)
PM
KM

Y −α
i

=
∑

Xi∈Π2(λ̄F )

X−α
i +

∑
Yi∈Π2(λ̄M )

Y −α
i

=
∑

Xi∈Π2(λ̄F+λ̄M )

X−α
i = (λ̄Fπ + λ̄Mπ)

α/2
∑

Ti∈Π1(1)

T
−α/2
i

where λ̄F := λF
NF

(
PF
KF

)2/α
and λ̄M := λM

NM

(
PM
KM

)2/α
. Hence,

the receive-SIRs at a typical FMS and a typical MMS, respectively,
are (with fading):

γF =
PFNF d

−α
F

Zα

(
λFP

2
α
F N

2
α
−1

F + λMP
2
α
MN

2
α
−1

M

)α/2 (12)

γM =
PMNMd

−α
M

Zα

(
λFP

2
α
F N

2
α
−1

F + λMP
2
α
MN

2
α
−1

M

)α/2 (13)

where the random variable Zα is defined in (4).

Similar to the previous section, we consider the following opti-
mization objective: for a minimum macrocell average spectral effi-
ciency constraint Rmin

M , find K∗
F and K∗

M that maximize the fem-
tocell average spectral efficiency. The expected spectral efficiency
expression for femtocells isRshF (NM , NF ) =

1
NF

E[log2(1+γF )],
and for macrocells is RshM (NM , NF ) = 1

NM
E[log2(1 + γM )]. It

is clear that RshF and RshM are increasing in NM and NF , respec-
tively, due to the decreased cross-tier interference in each case. On
the other hand, as NF increases for a fixed NM , the average E[γF ]
increases (due to the decreased femto-to-femto interference), but the
bandwidth ratio 1/NF utilized by each femto-user decreases, result-
ing in a nontrivial bandwidth-SIR trade-off affecting RshF as NF in-
creases. A similar tradeoff exists between RshM and NM . Here the
coupling between NM and NF adds to the complexity of the prob-
lem, in contrast to the case of spectrum splitting.

To simplify the analysis, we assume that the macrocell network
density is negligible compared to the femtocell density, such that the
interference caused by MBSs is negligible compared to the interfer-
ence caused by FAPs. In this case, RshM is decreasing in NM , while
RshF no longer depends on NM . Thus, it is optimal to operate using

the minimalNM (i.e.,N∗
M = 1). Define σ :=

(
λF d

2
F
PF d

−α
F

PMd−α
M

) 2
α−2

,

µ := 2
2

α−2 (R
min
M +E[log2 Zα]), ψ :=

(
2
Rmin

M −1
δ

) 2
α−2

, ωu := (η/δ)
2
α

ψ
,

and ωl := (η/δ)
2
α

µ
, where µ, ψ, ωl, and ωu can be computed via

Monte-Carlo simulations given α, Rmin
M , and the fading distribution,

with no dependency on the femtocell or macrocell network parame-
ters. The following proposition gives an upper and a lower bound on
the maximized femtocell average spectral efficiency, Rsh∗F , subject
to RshM ≥ Rmin

M , neglecting the interference from MBSs.

Proposition 2. Assuming that the interference from MBSs is negligi-
ble (IM ≪ IF ), the maximized femtocell average spectral efficiency,

Rsh∗F := max
s.t. Rsh

M
(NF )≥Rmin

M

RshF (NF ) (14)

is bounded as follows:
(a) If σ ≥ ωu + ϵ, then

1

Nub
F

E
[
log2

(
1 +

(µσ)
α
2

Zα

)]
≤ Rsh∗F

≤ 1

N lb
F

E
[
log2

(
1 +

(ψσ)
α
2

Zα

)]
(15)

and N lb
F ≤ N∗

F ≤ Nub
F , where

Nub
F := µ

[
PF
PM

(d2MλF )
α
2

] 2
α−2

, N lb
F := ψ

[
PF
PM

(d2MλF )
α
2

] 2
α−2

(b) If σ ≤ ωl − ϵ, then
1

ÑF
β ≤ Rsh∗F ≤ 1

ÑF
log2(1 + η) (16)

where ÑF = d2FλF
(
η
δ

)2/α, and ϵ is a small constant.

Proof. First, note that N∗
M = 1 with negligible interference form

MBSs, and that RshM is monotonically increasing with NF , whereas
RshF is increasing with NF up to a maximum value, then decreasing
as NF further increases. Using Jensen’s inequality to upper bound
Rmin
M ≤ RshM (1, NF ) ≤ log2(1+E[γM ]) and solving forNF yields

N lb
F as a lower bound on NF . No closed form analytic solution can

be obtained for N (uc)
F that maximizes RshF without the constraint

RshM ≥ Rmin
M . Instead, we maximize its upper bound obtained us-

ing Jensen’s inequality, which gives ÑF . The derivation steps are
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similar to the ones in the proof of proposition 1. Exhaustive numer-
ical results have shown the tightness of ÑF as an approximation for
N

(uc)
F , i.e., |ÑF −N

(uc)
F | < ϵ̃, where ϵ̃ is a small constant.

So long as N lb
F ≥ ÑF + ϵ̃, the optimal N∗

F (with the RshM ≥
Rmin
M constraint) is guaranteed to be larger than N lb

F . The condi-
tion N lb

F ≥ ÑF + ϵ̃ is equivalent to σ ≥ ωu + ϵ, where ϵ is a
small (positive) constant that accounts for the difference between
the optimum N

(uc)
F and its approximation ÑF . In this case N∗

F sat-
isfies RshM (N∗

F ) = Rmin
M and an upper bound on N∗

F , Nub
F , can

be obtained from RshM (N∗
F ) ≥ E

[
log2

(
PMd−α

M
N

α−2
2

F

ZαPF λ
α
2
F

)]
, where

solving for NF yields Nub
F . Substituting with N lb

F and Nub
F in

RshF yield the bounds given in (15). On the other hand, so long
as Nub

F ≤ ÑF − ϵ̃, the optimal N∗
F is N (uc)

F that maximizes RshF ,
with no constraint. This condition is equivalent to σ ≤ ωl − ϵ. The
bounds (16) are obtained following the proof of proposition 1.

Note that taking the interference from MBSs into consideration
decreasesRsh∗F , which means that the upper bounds in (15) and (16)
are also valid for the general case. According to proposition 2, we
say that the network is operating in the strong-femto-interference
regime if the network parameters satisfy σ ≥ ωu + ϵ, while the net-
work is said to be operating in the weak-femto-interference regime if
the network parameters satisfy σ ≤ ωl − ϵ. The proposition shows
that in the strong-femto-interference regime, the optimal number
of subchannels K∗

F grows with the ratio (PM/PF )
2

α−2 , and with
(1/λF )

α
α−2 , whereasK∗

F grows only with 1/λF in the weak-femto-
interference regime.

Intuitively, the number of subchannels K∗
F is restricted to be

small by the macrocell network parameters in the strong-femto- in-
terference regime, so that macro-users can achieveRmin

M (since larger
K∗
F imply larger IF ). On the other hand, in the weak-femto- in-

terference regime, the number of subchannels K∗
F optimizes the

bandwidth-SIR tradeoff for the femtocell network, irrespective of the
macrocell network parameters; this K∗

F is sufficiently small allow-
ing macro-users achieve Rmin

M . Note that increasing Rmin
M decreases

ωu and ωl, implying that the network switches to the strong-femto-
interference regime at a smaller σ. Numerous simulations indicated
the tightness of the upper bound of (15), and that Nub

F is a close ap-
proximation to N∗

F for σ ≥ ωu. This, in addition to the results of
proposition 1, imply that ÑF and the lower bound of (16) are close
approximations to N∗

F and Rsh∗F , respectively, for σ < ωu.

5. SPLITTING VS. SHARING

In this section, we compare between the maximized femtocell av-
erage spectral efficiency with spectrum splitting and with spectrum
sharing, when there is a constraint on the macrocell average spectral
efficiency. Define the spectral efficiency ratio ζ := Rsp∗F /Rsh∗F .

For negligible macrocell interference (λM ≪ λF ) and small
σ ≤ ωl − ϵ, it is easy to see from propositions 1 and 2 that ζ =
ν̃ ≤ 1, where ν̃ := (1 − ν∗), and that ζ is independent of σ in
that region (for fixed dM ). Note that ν̃ ≈ 1 for small λM . This
means that for the weak-femto-interference regime (i.e., small λF or

small PF d
−α
F

PMd−α
M

), the performance with spectrum sharing is approxi-

mately the same as (slightly better than) the performance with spec-
trum splitting. On the other hand, lower and upper bounds on ζ at
the strong-femto-interference regime are obtained by cross-dividing
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Fig. 1. Numerically computed ζ and its theoretical bounds vs. σ.

the bounds on Rsp∗F from (9) by the bounds on Rsh∗F from (15):

σ ν̃β/ωu

E
[
log2

(
1 + (ψσ)

α
2

Zα

)] ≤ ζ ≤ σ ν̃ log2(1 + η)/ωl

E
[
log2

(
1 + (µσ)

α
2

Zα

)] (17)

Next, we show that ζ is increasing with σ for sufficiently large
σ. It is easy to see that the upper and lower bounds on ζ are both in-
creasing with σ/ log2(σ) for large σ. Since limσ→∞ σ/ log2(σ) =
∞, this implies that there exists a certain threshold, σ0, where ζ is
guaranteed to be monotonically increasing with σ for σ ≥ σ0. Note
that the lower bound in (17) is obtained by ignoring interference
from MBSs with spectrum sharing, and hence it is also valid for the
general case. This shows that it is better to split the spectrum be-
tween macrocells and femtocells for large σ, where the performance
advantage with spectrum splitting increases as σ further increases.

In Fig. 1, we considered a network with L = 1000 subcarriers,
λM = 10−6 MBSs/m2 (1 MBS per Km2), λF = 2×10−3 FAPs/m2,
dF = 15m, dM = 100m, Rmin

M = 0.5 bps/Hz, α = 5 (typically be-
tween 4 and 6 indoors), PM = 50 dBm, and i.i.d Rayleigh fading
channel. The figure shows the relation between ζ and σ, where σ is
increased by increasing PF from 0 dBm to 50 dBm. The values of
Rsp∗F and Rsh∗F were numerically optimized to compute the ratio ζ,
where the expectations with respect to random locations and fading
were numerically computed via more than 104 Monte-Carlo simu-
lation runs. The lower (dotted line) and upper (dashed line) bounds
on ζ are also plotted for σ ≥ ωu. The figure shows that ζ ≈ 1
for σ < ωu (i.e., weak-femto-interference regime) whereas it is in-
creasing with σ for σ ≥ ωu (i.e., strong-femto-interference regime).
The increase of ζ with σ/ log2(σ) for large σ is also apparat in the
figure. For typical PF = 30 dBm (σ = 15.2 > ωu), the opti-
mal ν∗ = 0.053, K∗

F = 305, and K∗
M = 53 yield Rsp∗F = 0.58

bps/Hz with spectrum splitting, whereas the optimal K∗
F = 30 and

K∗
M = 830 yield Rsh∗F = 0.25 bps/Hz with spectrum sharing.

The relation between ζ and σ can be intuitively explained as fol-
lows. In the weak-femto-interference regime, the decrease of Rsh∗F

due to the interference on FMSs from MBSs with spectrum sharing
is approximately equivalent to the decrease of Rsp∗F due to reserv-
ing a portion of the spectrum for macro-users. As σ increases to the
strong-femto-interference regime, the constraint Rmin

M restricts KF

to a small value to control the femto-to-macro interference, result-
ing in a decreased Rsh∗F , whereas there is no such restriction on KF

when the spectrum is split, resulting in a relatively larger Rsp∗F .

6. CONCLUSIONS
We have characterized the number of utilized subchannels that maxi-
mizes the ergodic spectral efficiency for femtocells, subject to a min-
imum ergodic spectral efficiency constraint for macrocells, when co-
existing femtocells and macrocells share, or split, the spectrum in an
OFDMA setting. The provided analysis shows that it is generally
better to assign separate portions of the spectrum to the macro- and
femtocell networks, rather than using the same subchannels.
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