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ABSTRACT

We propose a robust formulation for the noncooperative rate-
maximization game in MIMO Gaussian interference channels under
bounded channel uncertainty. The proposed robust game needs little
additional computation and requires no additional information ex-
change among users when compared to the nominal game and thus
maintains the low-complexity and distributed nature of the MIMO
waterfilling algorithm. The robust rate-maximization game is shown
to be equivalent to the nominal game with modified direct-channel
matrices. The equilibrium solution of the robust rate-maximization
game and the required iterative algorithm to obtain the solution
are presented. Sufficient conditions for the uniqueness of the equi-
librium and the convergence of the algorithm are also presented.
Simulation results indicate that the robust solution in the presence of
channel uncertainty performs better than the nominal solution with
zero uncertainty, due to the users being more conservative in their
power allocation when there is channel uncertainty.

Index Terms— Game theory, resource allocation, MIMO sys-
tems, Nash equilibrium, waterfilling, robustness.

1. INTRODUCTION

The competitive rate-maximization problem for the Gaussian inter-
ference channel with single-antenna users has been well-studied and
characterized over the past decade using non-cooperative game the-
ory (See [1] and references therein). This has been extended to
the multi-antenna scenario [2, 3] where the multiple-input multiple-
output (MIMO) waterfilling algorithm has been developed and char-
acterized. However, these schemes assume the availability of perfect
channel knowledge, which is not possible in a practical scenario due
to various reasons such as estimation errors, feedback quantization
and latency between channel estimation and signal transmission.

Uncertainty in rate-maximization games for the Gaussian in-
terference channel has been investigated [4]. Our previous work
presented and analyzed a robust rate-maximization game in the
frequency-selective Gaussian interference channel under bounded
channel uncertainty [5, 6]. However, these solutions were limited
to SISO (single-input single-output) systems and cannot be directly
applied to MIMO systems.

A dynamic robust game for rate-maximization in MIMO sys-
tems has been proposed [7] where a learning framework has been
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used to develop suitable power allocations in repeated games in the
presence of channel uncertainty and imperfect payoffs (information
rate) with time delays. Such an approach has no closed-form solu-
tion, both for the static and dynamic case, and needs to be computed
numerically, which makes further characterization of the equilibrium
difficult. In addition, the simulation results presented therein are for
the dynamic case where robustness under a learning framework is
investigated. However, the effect of the degree of uncertainty on the
properties of the equilibrium have not been investigated.

Here, we propose a distribution-free robust rate-maximization
game for the MIMO Gaussian interference channel under bounded
channel uncertainty and show that this is equivalent to a nominal
MIMO rate-maximization game [2] with modified channel matrices.
The proposed robust solution also needs no additional information
(other than the uncertainty bound) such as the strategies and channel
matrices of other users and does not add much to the complexity of
the nominal solution. The closed-form equilibrium solution for this
game is presented along with sufficient conditions for the uniqueness
of the equilibrium and the convergence of the iterative waterfilling
algorithm (IWFA) proposed for computing it. We also investigate the
effect of uncertainty on the guaranteed convergence of the algorithm
and the sum-rate of the system. We show that the robust solution
leads to higher sum-rate with increasing uncertainty, but at the cost
of guaranteed convergence of the algorithm.

This paper is organized as follows: The system model and its
underlying assumptions are described in Section 2. In Section 3, the
robust rate-maximization game for the MIMO Gaussian interference
channel is formulated. In Section 4, the equilibrium solution for the
robust MIMO rate-maximization game is presented and character-
ized. In Section 5, the behaviour of the proposed solution is analyzed
under various conditions through simulations. Finally, conclusions
are drawn in Section 6.

2. SYSTEM MODEL

Notations used: The operators (·)H ,E{·},Tr(·) and ‖ · ‖F denote
the Hermitian, statistical expectation, trace and Frobenius norm
operations respectively. R

m×n
+ is the set of m × n matrices with

real non-negative elements. The largest, i-th largest and small-
est eigenvalues of matrix A are denoted by λmax(A), λi(A) and
λmin(A) respectively. The largest and smallest singular values of
matrix A are denoted by σmax(A) and σmin(A) respectively. The
spectral radius of matrix A is denoted by ρ(A). The operation
(x)+ , max(0, x). A random variable x drawn from a complex
normal distribution with mean µ and variance σ2 is denoted by
x ∼ NC(µ, σ

2).
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Consider a MIMO Gaussian interference channel composed of
Q MIMO transmit-receive pairs operating in the same environment.
The signal vector yq ∈ C

nRq
×1 measured at the receiver of user q

is
yq = H̃qqxq +

∑

r 6=q

Hrqxr + nq (1)

where H̃qq ∈ C
nRq

×nTq is the direct-channel matrix between
source q and destination q, Hrq ∈ C

nRq
×nTr is the cross-channel

matrix between source r and destination q, xq ∈ C
nTq

×1 is the sig-
nal vector transmitted by source q and nq ∈ C

nRq
×1 is the receiver

noise vector of user q, which is assumed to be a zero-mean complex
Gaussian vector with an arbitrary (nonsingular) covariance matrix
Rnq . The multi-user interference (MUI) observed at the destination
q, which is treated as additive spatially coloured noise at the receiver
of user q, is represented by the second term in the right hand side of
(1).

The system is assumed to be quasi-stationary for the duration of
the transmission. Each receiver is assumed to be able to measure
accurately the covariance matrix of the noise plus MUI generated by
the other users. The direct-channel matrices {H̃qq}Qq=1 are assumed
to be square and nonsingular and to have a bounded uncertainty of
unknown distribution. 1 The uncertainty set Hq of the direct-channel
matrix H̃qq is deterministically modelled as an ellipsoid centered
around the nominal value Hqq ,

Hq ,
{
H̃qq , Hqq +∆q : ‖∆q‖F ≤ ǫq

}
(2)

where ǫq is the uncertainty bound.
Each destination q computes the optimal covariance matrix

Qq , E{xqx
H
q } for its own link and transmits it back to its trans-

mitter over a low bit-rate error-free feedback channel. From this
optimal covariance matrix, the beamformer weights of the transmit-
ter can be computed as xq =

∑nTq

i=1

√
λqivqi where λqi is the i-th

eigenvalue of Qq and vqi is its associated eigenvector.
The nominal information rate of user q, Rq(Qq,Q−q), for this

system can be written as

Rq(Qq ,Q−q) = log det(I+H
H
qqR

−1
−q(Q−q)HqqQq) (3)

where R−q(Q−q) , Rnq +
∑

r 6=q
HrqQrH

H
rq is the interfer-

ence plus noise covariance matrix observed by destination q, and
Q−q , {Qr}r 6=q is the set of covariance matrices of all users ex-
cept the q-th user. Each player q competes rationally against other
users in order to maximize its own information rate Rq(Qq,Q−q)
by designing the optimal covariance matrix Q⋆

q , given the constraint
E
{
‖xq‖22

}
= Tr(Qq) ≤ Pq where Pq is the maximum average

power transmitted in units of energy per transmission for user q.
Mathematically, the nominal game without CSI uncertainty can

be written as [2]

Gnom

max
Qq

Rq(Qq ,Q−q)

s. t. Qq ∈ Qq

∀q ∈ Ω (4)

where Ω , {1, . . . , Q} is the set of the Q players (i.e. MIMO links),

1An ellipsoid is often used to approximate unknown and potentially com-
plicated convex uncertainty sets [8]. The ellipsoidal approximation has the
advantage of parametrically modelling a complicated data set and thus is
a convenient input parameter to algorithms. In addition, there are statis-
tical reasons leading to ellipsoidal uncertainty sets in certain cases. Also,
this model often results in optimization problems with convenient analytical
structures [9].

Rq(Qq ,Q−q) is the payoff function of player q as given in (3) and
the set of admissible strategies of player q, Qq , is defined as

Qq ,
{
Q ∈ C

nTq
×nTq : Q � 0, Tr(Qq) = Pq

}
. (5)

3. ROBUST RATE-MAXIMIZATION GAME
FORMULATION

The robust game model [10] suggests that when players have uncer-
tainties in their payoff functions, formulating the best response to the
worst-case payoff functions leads to a stable equilibrium. Motivated
by this approach, a protection function (which is a lower bound on
the payoff function) is formulated for each user, which is then max-
imized.

Theorem 1. The protection function for the information rate of user
q in (3) in given by

log det
(
I+ γqH

H
qqR

−1
−q(Q−q)HqqQq

)
, (6)

where γq is defined as γq , 1− 2ǫq/σmax(Hqq).

Proof. See Appendix A.

Note that the lower bound indicated by γq could be too loose if
the uncertainty bound ǫq is too high or if the largest singular value of
the direct-channel, σmax(Hqq) is too small. In particular, this could
lead to γq ≤ 0. However, λmin(E

H
q Eq) ≥ 0. Hence, the range of

γq is limited to 0 < γq ≤ 1, or when σmax(Hqq) ≥ 2ǫ.
Based on the protection function in (6), the robust MIMO rate-

maximization game Grob can be formulated as, ∀q ∈ Ω,

max
Qq

log det
(
I+ γqH

H
qqR

−1
−q(Q−q)HqqQq

)

s. t. Qq ∈ Qq

(7)

Note that the quantity γq of user q is dependent only on its own
direct-channel Hqq and its uncertainty bound ǫq , and thus does not
need any additional information (other than the uncertainty bound),
such as other users’ transmit covariances or channel matrices, when
computing the robust solutions. Furthermore, the quantity γq is re-
lated to the relative uncertainty in the direct-channel matrices (de-
termined by the ratio ǫq/σq(Hqq)). In addition, this formulation has
the advantage of not needing any additional computational hardware,
as the eigendecomposition is performed anyway in every iteration of
the algorithm when computing the waterfilling solutions. Moreover,
the additional computational cost (when compared to nominal algo-
rithm for a system with no uncertainty) is not going to be significant,
as the quantity γq needs to be computed only once, at the beginning
of the game.

It can be observed that the robust game Grob is equivalent
to the nominal game Gnom in (4), with the modified channels
{√ γq Hqq}q∈Ω instead of the original channels {Hqq}q∈Ω.

4. EQUILIBRIUM OF GAME Grob

The solution to the nominal game Gnom is the Nash equilibrium [2].
Based on this, the equilibrium of the game Grob can be found. In
the robust game Grob, given Q−q ∈ Q−q , Q1 × · · · × Qq−1 ×
Qq+1×· · ·QQ, the optimum action profile of the players {Q⋆

q}q∈Ω

at the equilibrium must satisfy, ∀q ∈ Ω

Q
⋆
q = RWFq(Q

⋆
−q), (8)
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with the robust waterfilling operator RWFq(·) defined as

RWFq(Q−q) , Uq(µqI− 1
γq

D
−1
q )+UH

q (9)

where µq is chosen to satisfy Tr
(
(µqI − 1

γq
D−1

q )+
)
= Pq . The

unitary matrix of eigenvectors Uq = Uq(Q−q) ∈ C
nTq

×nTq and

the diagonal matrix Dq = Dq(Q−q) ∈ R
nTq

×nTq

++ are calculated
from the eigendecomposition UqDqU

H
q , HH

qqR
−1
−q(Q−q)Hqq .

The robust optimal covariance matrices Q∗
q
Q

q=1
of the users can

be calculated through an iterative waterfilling algorithm [2] using the
robust waterfilling operator RWFq(·).

Given the MIMO system in (1), the non-negative matrix Sγ ∈
R

Q×Q
+ is defined as

[Sγ ]qr ,





1

γq
ρ
(
H

H
rqH

−H
qq H

−1
qq Hrq

)
, if r 6= q,

0, otherwise
(10)

we have the following result:

Theorem 2. Game G
rob has at least one equilibrium for any feasi-

ble set of channel matrices and transmit powers of the users. Fur-
thermore, the equilibrium is unique and the robust MIMO IWFA con-
verges to the unique equilibrium as T → ∞ for any set of feasible
initial conditions if

ρ(Sγ) < 1 (11)

where Sγ is defined in (10).

Proof. Refer [2, Theorem 6,7].

It can be verified that the above condition reduces to the nominal
condition [2] when there is no uncertainty (γq = 1 ∀q ∈ Ω). When
the relative uncertainties, i.e, the ratio ǫq/σq(Hqq), of all users is
the same, the quantities γq of all users are identical. In this case, the
sufficient condition in (11) can be simplified as follows:

Corollary 1. When the relative uncertainties of all the users are
identical, i.e., when γq = γ, ∀q ∈ Ω, the sufficient condition for
the uniqueness of the equilibrium and the guaranteed convergence
of the robust MIMO IWFA, described in (11), reduces to

ρ(S) < γ (12)

where S is defined as

[S]qr ,

{
ρ
(
H

H
rqH

−H
qq H

−1
qq Hrq

)
, if r 6= q,

0, otherwise
(13)

This result helps analyze the effect of uncertainty on the set
of channel matrices for which the equilibrium is guaranteed to be
unique and the robust MIMO IWFA is guaranteed to converge. In
the absence of uncertainty, this occurs when ρ(S) < 1 [2]. When
the uncertainty bound of the system increases, the value of γ re-
duces, and thus, the set of matrices that satisfy (12) shrinks. Thus,
to achieve a robust solution, there is a trade-off between allowed un-
certainty and guaranteed convergence of the algorithm.

5. SIMULATION RESULTS

In this section, the average behaviour of the robust MIMO algorithm
under different scenarios is investigated. These results are compared

with the nominal solution (i.e. using the MIMO waterfilling algo-
rithm [2] with erroneous channel matrices). The simulation results
are provided for a system with Q users averaged over 10000 tri-
als with random channel matrices where the elements of the cross-
channel matrices [Hrq]ij ∼ NC(0, 1) for r 6= q and the direct-
channel matrices [Hqq ]ij ∼ NC(0, d

2
r). The channel uncertainty

model is H̃qq , Hqq + ∆q where ‖∆q‖F ≤ ǫ (from (2)). The
specific parameters such as number of transmit/receive antennas and
number of users are provided with each figure. It is to be noted
that the quantity dr is the ratio between the standard deviation of
the elements of the random direct-channel matrices and the standard
deviation of the elements of the random cross-channel matrices. A
higher value of dr indicates weaker interference in the system.

The average number of iterations required to converge to the ro-
bust solution against the uncertainty bound of the system is depicted
in Figure 1. It can be observed that the robust solution takes longer
to converge with higher uncertainty in the system.

In Figure 2a, it can be observed that the sum-rate under the ro-
bust solution improves with rise in uncertainty while the sum-rate
under the nominal solution falls with increase in uncertainty. This
gap in performance can be observed to be zero under zero uncer-
tainty since the two solutions coincide. In Figure 2b, the average
sum-rate of a system with 2 users is plotted against the number of
transmit/receive antennas of each user. It can be observed that the
average sum-rate of the robust solution increases with the number
of antennas as expected in MIMO systems. Furthermore, the robust
waterfilling solution consistently performs better than the nominal
solution for the observed number of transmit/receive antennas.

In Figure 2c we observe that increasing the number of users re-
sults in a lower sum-rate because a higher number of users in the
system results in higher interference for all users, given a fixed value
of dr. In addition, it can be observed that the robust solution per-
forms better than the nominal solution regardless of the number of
users in the system.

In Figure 2d, the effect of the level of interference on the aver-
age sum-rate of the system can be observed. The average sum-rate
at the robust solution increases with reduction in interference. Note
that a higher value of dr indicates weaker interference in the system.
It can also be observed that the gap in performance between the ro-
bust solution and the nominal solution is higher when the system has
higher interference and falls with reduction in interference. This is
because the robust solution encourages each user to be less greedy,
which results in lower interference for all users. In systems with rel-
atively stronger cross-channel matrices, this plays a greater role in
determining the observed information rates of the users, when com-
pared to systems with weak cross-channel matrices. Thus, when dr
increases, the robust solution moves closer to the nominal solution.

6. CONCLUSIONS

This paper developed a robust formulation for the rate-maximization
game in MIMO Gaussian interference channels in the presence of
bounded channel uncertainty. The proposed scheme required no ad-
ditional information exchange among users and does not add much
complexity to the algorithm. The robust game thus developed was
shown to be equivalent to the nominal MIMO rate-maximization
game with modified direct-channel matrices. The equilibrium so-
lution for this game and an iterative algorithm to compute it dis-
tributively were presented and characterized. Numerical simulations
on the behaviour of this scheme indicated that the robust solution in
the presence of channel uncertainty performs better than the nominal

4821



0 0.1 0.2 0.3 0.4 0.5
5.5

6

6.5

7

7.5

8

8.5

Nt=Nr=3, Q=2, d
r
=1.125

Uncertainty bound, ε

A
ve

ra
ge

 n
um

be
r 

of
 it

er
at

io
ns

Fig. 1: Number of iterations vs. channel uncertainty bound, ǫ.

solution with perfect channel knowledge due to the users being less
greedy.

A. APPENDIX: PROOF OF THEOREM 1

Defining the matrices Mq and Eq as

Mq , H
H
qqR

−1
−q(Q−q)Hqq, and Eq , I+H

−1
qq ∆q, (14)

the observed information rate of user q can be written as R̃q(Qq,Q−q)

= log det(I+ H̃
H
qqR

−1
−q(Q−q)H̃qqQq), (15)

=
∑nq

i=1 log λi(I+EH
q MqEqQq), (16)

=
∑nq

i=1 log
(
1 + λi(E

H
q EqMqQq)

)
, (17)

≥ ∑nq

i=1 log
(
1 + λmin(E

H
q Eq)λi(MqQq)

)
. (18)

where (16) follows from (14) and [11, Theorem 1.2.12]; (17) follows
from Weyl’s Theorem [11, Theorem 4.3.1]; and (18) follows from
[12, Fact 8.19.17]. Now, λmin(E

H
q Eq)

= λmin

(
I+∆

H
q H

−H
qq +H

−1
qq ∆q +∆

H
q H

−H
qq H

−1
qq ∆q

)
, (19)

≥ 1+λmin

(
∆

H
q H

−H
qq +H

−1
qq ∆q

)
+λmin

(
∆

H
q H

−H
qq H

−1
qq ∆q

)
, (20)

≥ 1− 2σmax

(
H

−1
qq ∆q

)
+ λmin

(
∆

H
q H

−H
qq H

−1
qq ∆q

)
, (21)

≥ 1− 2σmax

(
H

−1
qq ∆q

)
+ λmin

(
H

−H
qq H

−1
qq

)
λmin

(
∆

H
q ∆q

)
, (22)

≥ 1− 2σmin

(
H

−1
qq

)
σmax

(
∆q

)
, (23)

≥ 1− 2ǫq/σmax

(
Hqq

)
, (24)

where (20) follows from Weyl’s Theorem [11, 4.3.1]; (21) fol-
lows from [12, Fact 5.11.25]; (22) follows from [12, Fact 8.19.17];
(23) follows from [12, Proposition 9.6.6] and from the fact that
λmin

(
∆H

q ∆q

)
≥ 0; and (24) follows from the definition of Frobe-

nius norm.
Using (24) in (18), the protection function for user q is given by

R̃q(Qq ,Q−q)

≥ ∑nq

i=1 log
(
1 + γqλi(MqQq)

)
, (25)

= log det
(
I+ γqH

H
qqR

−1
−q(Q−q)HqqQq

)
, (26)

where (26) follows from [11, Theorem 1.2.12] and γq is defined in
Theorem 1.
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Fig. 2: Sum-rate of the system under various scenarios.
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