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ABSTRACT

In this paper, a wireless sensor network is considered in which the

objective is not to communicate individual sensor readings over

a Gaussian multiple-access channel to a fusion center but rather to

reliably compute some nomographic function thereof. Nomographic

functions are exactly those multivariate functions that can be rep-

resented as a post-processed sum of pre-processed sensor readings.

This special structure permits the utilization of the interference

property of the Gaussian multiple-access channel for computing

some nomographic functions at significantly higher rates than those

achievable with traditional schemes. In this paper, a corresponding

coding scheme is presented that protects the sum of pre-processed

sensor readings against the channel noise by letting each node use

the same nested lattice code.

Index Terms— Distributed computation, nomographic func-

tions, nested lattice codes, multiple-access channel, sensor networks

1. INTRODUCTION

Many wireless sensor network applications require the reliable com-

putation of a pre-defined function of the measurements at a fusion

center (e.g., arithmetic mean, maximum value) [1]. To solve the

computation problem at hand, the transmissions of nodes are typi-

cally coordinated so that the fusion center receives interference-free

transmit signals, which facilitates the reconstruction of each individ-

ual sensor reading. Once the fusion center is aware of all sensor

readings, it subsequently computes the function of interest.

In [2] it is shown that this approach can be highly inefficient

when the function to be computed at the fusion center is linear. In

fact, the interference caused by concurrently transmitting nodes can

be harnessed to compute function values at significantly higher rates

than those achievable with any interference avoiding strategy (i.e.,

strategies recovering all the sensor readings at the fusion center).

Exploiting interference for efficiently computing nonlinear

functions of the measurements is considered in [3]. The key idea is

to apply a pre-processing function to each sensor reading prior to

transmission and a post-processing function to the signal received

by the fusion center (i.e., the sum of the individual transmit signals).

Essentially, this allows an efficient computation of all nomographic

functions over the channel, which are functions having a representa-

tion (2) [4].
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In contrast to the analog computation scheme proposed in [3],

we present in this paper a simple digital one that extends the ideas

of [5] to the computation of some nonlinear nomographic functions

over a Gaussian multiple-access channel at a computation rate that

is not achievable with conventional methods. The idea is as follows:

each node first quantizes real-valued pre-processed sensor readings

and then employs a nested lattice code from [6], [5] to protect the

sum of messages against channel noise. Decoding the sum and ap-

plying the corresponding post-processing function provides a reli-

able estimate of the sought nomographic function value.1

2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a wireless sensor network consisting of K ∈ N nodes that

are spatially distributed around a Fusion Center (FC). The nodes

jointly observe a certain physical phenomenon resulting in real-

valued sensor readings si ∈ S, i = 1, . . . ,K, where S ⊂ R denotes

some compact measurement space.2

The objective of the network is not to communicate the indi-

vidual si to the FC but rather to reliably compute some pre-defined

function f ∈ F(S
K) thereof, called desired function. In doing so,

all nodes share a synchronous Gaussian Multiple-Access Channel

(MAC) where the channel output at the tth channel use has the form

Y [t] =
∑K

i=1
Xi[t] + Z[t] , t ∈ Z , (1)

with Xi[t] ∈ R the corresponding input symbol of node i and

Z[t] ∼ N (0, N), N > 0, independent and identically distributed

(over channel uses) white Gaussian noise [7].

According to (1) is summation the natural mathematical oper-

ation of a Gaussian MAC, which can be beneficially exploited to

compute linear functions in wireless networks much more efficiently

than with interference avoiding strategies [2]. In [4] it is shown that

essentially even every f ∈ F(S
K) is computable over a Gaussian

MAC since every real-valued function of K variables has a nomo-

graphic representation.

Definition 1. Let A be any metric space and K ≥ 2. Then, a func-

tion f : AK → R for which there exist functions {ϕi ∈ F(A)}Ki=1

1Notation: The natural, integer and real numbers are denoted by N, Z
and R. Let Aℓ be some topological space, then C

0(Aℓ) denotes the space
of real-valued continuous functions with domain Aℓ. In contrast, F(Aℓ)
denotes the space of every function f : Aℓ → R. The volume of a closed
subset D of Rℓ is described by Vol(D).

2Assuming S to be compact is justified by the fact that every commercial
sensor device has a limited range in which it is able to quantify observations.
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Fig. 1. System model for reliably computing a nomographic function

f(s1, . . . , sK) = ψ
(
∑K

i=1 ϕi(si)
)

over a Gaussian MAC where

appropriate data pre- and post-processing matches the channel to f .

and ψ ∈ F(R) such that f can be represented in the form

f(x1, . . . , xK) = ψ
(

∑K

i=1
ϕi(xi)

)

(2)

is called nomographic function. The space of all nomographic func-

tions with domain A
K is denoted by N(A

K).

Remark 1. In what follows, the functions {ϕi}Ki=1 are called pre-

processing functions and ψ is called post-processing function. These

functions are chosen to match the summation structure of the Gaus-

sian MAC to the desired function. See [4] for examples.

The problem to be solved in this paper is therefore to reliably

and efficiently compute elements of N(S
K) by using an appropriate

nested lattice computation code from [6], [5].

3. RELIABLE COMPUTATION OF SOME

NOMOGRAPHIC FUNCTIONS

In the following, we confine our attention to those elements of

N(S
K) for which we can find continuous pre- and post-processing

functions. Note that although we assume fixed realizations of sensor

readings (i.e., single function computations), the scheme proposed in

this section can be easily extended to sequences of sensor readings.

3.1. Data Pre- and Post-Processing

Since the measurement space S is assumed to be compact, the ranges

of pre-processing functions are also compact and we denote them by

Πi in what follows (i.e., ∀si ∈ S : ϕi(si) ∈ Πi, i = 1, . . . ,K).

So, the union Π :=
⋃K

i=1 Πi is compact as well and we denote by

πmax := maxξ∈Π |ξ| the maximal element of Π in absolute value.

To reliably compute some real-valued nomographic functions

over a finite capacity channel, each node has to first quantize its

pre-processed sensor reading to a length-k message. More precisely,

each node uses the same mapping q : Π → {0, . . . , b − 1}k ,

q
(

ϕi(si)
)

= wi, i = 1, . . . ,K, where b ≥ 2 is assumed to be

prime (see Fig. 1). To get an idea of how q is working recall that

every ϕi(si) ∈ Π has a unique b-adic expansion [8]

ϕi(si) = (−1)ηi
∑∞

j=−ℓ

wij

bj
= lim

m→∞
(−1)ηi

∑m

j=−ℓ

wij

bj
,

(3)

where wij ∈ {0, . . . , b− 1} with wij 6= b− 1 for infinitely many j.
Observe that ηi ∈ {0, 1} depends on the sign of ϕi(si).

Consider now the approximation

ϕi(si) ≈ ϕ̂i(si) = (−1)ηi
∑m

j=−ℓ
wijb

−j
(4)

by terminating the infinite series (3). Then, setting k := m + ℓ +
2, the quantizer q simply forms length-k messages by extracting

the weights and the sign from expansion (4) that represent the pre-

processed sensor readings up to precision
∣

∣ϕi(si)− ϕ̂i(si)
∣

∣ < b−m = b−k+ℓ+2 . (5)

Now, for computing some f ∈ N(S
K), the FC needs a reli-

able estimate of the corresponding g(s1, . . . , sK) :=
∑K

i=1 ϕ̂i(si),
which is equivalent to reliably computing the mod b sum of messages

g :=

K
⊕

i=1

wi (6)

over the Gaussian MAC. Once the FC knows g, the data post-

processing (see Fig. 1) consists of the inverse quantizer that puts

g into expansion (4), and of the post- processing function ψ that

provides an estimate of the desired function value f(s1, . . . , sK).

Remark 2. To avoid any overflow in the modulo addition (6), we

choose in (4) ℓ = ⌊logb(Kπmax)⌋.

A crucial step in achieving reliable computations is the protec-

tion of (6) against the noise, which we want to ensure by using a

lattice coding scheme from [6], [5] as described in the following.

3.2. Lattice Computation Coding

First, we recall some notions on nested lattice codes from [9], [10].

Definition 2. An n-dimensional lattice Λ is a discrete additive sub-

group of the Euclidean space R
n that is closed under addition and

subtraction (i.e., λ1,λ2 ∈ Λ ⇒ λ1 ± λ2 ∈ Λ). Any lattice can be

specified by a generator/basis matrix G ∈ R
n×n:

Λ = {λ = Gµ |µ ∈ Z
n} =: GZ

n .

Definition 3. A quantizer associated with lattice Λ is a map QΛ :
R

n → Λ that assigns any point µ ∈ R
n to the nearest point in Λ:

QΛ(µ) = argmin
λ∈Λ

‖µ− λ‖2 .

Definition 4. The fundamental Voronoi region of an n-dimensional

lattice Λ, denoted as V , is the set of all points in R
n that quantize to

the zero vector:

V := {µ ∈ R
n |QΛ(µ) = 0} .

Definition 5. The second moment (per dimension) of a lattice Λ ⊂
R

n is defined as

σ2(Λ) :=
1

nVol(V)

∫

V
‖x‖22 dx . (7)

Definition 6. A lattice Λs is nested in a lattice Λc if Λs ⊂ Λc (i.e., Λs

is a sublattice of Λc). The latticeΛs with fundamental Voronoi region

Vs is called shaping lattice whereas Λc with fundamental Voronoi

region Vc is called coding lattice.

Fig. 2 depicts an example of a nested lattice pair, where GZ
2

with basis matrix G =
(√

3/2 0
1/2 1

)

generates the coding lattice.

Definition 7. The modulo operation with respect to a lattice Λ pro-

vides for any µ ∈ R
n the quantization error

[µ] mod Λ := µ−QΛ(µ) ,

which is always in V . For all µ,ν ∈ R
n and Λ ⊂ Λ′ it satisfies a

distributive and commutative law:

[µ+ ν] mod Λ =
[

[µ] mod Λ + ν
]

mod Λ (8)

[QΛ′(µ)] mod Λ = [QΛ′([µ] mod Λ)] mod Λ . (9)
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Fig. 2. Part of a nested lattice Λs ⊂ Λc in R
2 with Vs the fundamen-

tal Voronoi region of the shaping lattice Λs (black dots) and Vc the

fundamental Voronoi region of the coding lattice Λc (white dots).

Definition 8. Given any pair of nested lattices Λs ⊂ Λc. Then, a

nested lattice code C is defined as the set of all points from Λc that

are within the fundamental Voronoi region of the shaping lattice:

C := Λc ∩ Vs . (10)

With the above definition, the rate (in bits per channel use) of an

n-dimensional nested lattice code C is

R =
1

n
log2(|C|) =

1

n
log2

(

Vol(Vs)

Vol(Vc)

)

. (11)

Remark 3. The essential structural property of a nested lattice code

is linearity, which means that any sum of lattice codewords modulo

the shaping lattice is a codeword itself:

∀x1, . . . ,xK ∈ C ⇒
[

∑K

i=1
xi

]

mod Λs ∈ C . (12)

3.2.1. Encoding

To protect the sum (6) against noise, each sensor node uses the same

n-dimensional nested lattice code C, chosen from the code sequences

constructed in [10], with a shaping lattice that is scaled such that

the second moment is equal to some power constraint P > 0 (i.e.,

σ2(Λs) = P ). Consequently, each node is equipped with the same

lattice encoder (see Fig. 1)

E : {0, . . . , b− 1}k → C ⊂ R
n

(13)

that maps length-k messages to length-n lattice codewords (i.e.,

xi = E(wi)). Due to the appropriate scaling of the shaping lattice,

each codeword meets the transmit power constraint 1
n
‖xi‖22 ≤ P .

The coding rate at each node is with (11) equal to

R =
k

n
log2(b) =

1

n
log2

(

Vol(Vs)

Vol(Vc)

)

. (14)

In what follows, we assume that the encoding function (13) fulfills

E−1
([

∑K

i=1
E(wi)

]

mod Λs

)

=
K
⊕

i=1

wi . (15)

The existence of such linearity preserving encoders is shown in [6].

3.2.2. Decoding

Once the sensor nodes simultaneously used the Gaussian MAC n
times, the FC is aware of the receive vector y =

∑K
i=1 xi + z,

z ∼ N (0, NIn) (see Fig. 1). Then, to obtain an estimate of (6),

the FC applies a decoding function D : Rn → {0, . . . , b− 1}k that

consists of an Euclidean nearest neighbor decoder [9] followed by

the inverse of the encoding function due to (15):

D(y) = E−1 ([QΛc(y)] mod Λs) = ĝ . (16)

Obviously, the nearest neighbor decoder quantizes the receive vector

onto the coding lattice and subsequently reduces the outcome to the

shaping lattice, which guarantees that the resulting lattice point is a

codeword (see [9] and [10] for more details).

Let δ > 0 be arbitrary. Then, the modulo b sum of messages

is said to be decoded with error probability δ, if P(g 6= ĝ) < δ.

Since we have not introduced any probability distribution on the pre-

processed sensor readings, the error probability is small for every

codeword and thus for every choice of {ϕi(si) ∈ Π}Ki=1. Hence,

P(g 6= ĝ) is a maximum error probability [5].

3.3. Achievable Computation Rate

Given the computation scheme described above, the following the-

orem provides as an extension of [5, Thm. 2] the corresponding

achievable computation rate at which some elements from N(S
K)

can be computed within precision ε > 0 (in probability).

Theorem 1. Let f ∈ N(S
K) with continuous pre- and post-

processing functions. Furthermore, let ε > 0 be arbitrary and

the maximum transmit power at each node P > N . Then, f
can be computed over the Gaussian MAC with error probability

P(|f − f̂ | > ε) → 0 exponentially fast for n → ∞ and sufficiently

large k and b if the rate (14) fulfills

R <
1

2
log2(P/N) . (17)

Proof. Consider any f(s1, . . . , sK) = ψ(
∑

i ϕi(si)) with contin-

uous pre- and post-processing functions. According to the approx-

imations (4) let f̃(s1, . . . , sK) := ψ(
∑

i ϕ̂i(si)). Now, let ε > 0
be arbitrary and choose k and b in dependency of the pre- and post-

processing functions such that |f − f̃ | ≤ ε. Then, simultaneously

transmitting the corresponding encoded messages xi = E(wi), with

wi = q
(

ϕi(si)
)

, results with the decoder (16) in

D(y) = E−1
([

QΛc

(

∑K

i=1
xi + z

)]

mod Λs

)

(18)

= E−1
([

QΛc

([

∑K

i=1
xi

]

mod Λs + z
)]

mod Λs

)

(19)

= E−1 ([QΛc (x+ z)] mod Λs) , (20)

where (19) follows from the commutative and distributive properties

(9) and (8), respectively. Because of (12), we have x ∈ C and thus

y is a codeword corrupted by Gaussian noise.

Then, with the sequence of nested lattices from [10], we have

∀x ∈ C : limn→∞ P
(

[QΛc (x+ z)] mod Λs 6= x
)

= 0 expo-

nentially fast as long as the rate (14) is smaller than 1
2
log2

(

P
N

)

.

Consequently, P(g 6= ĝ) → 0 exponentially fast in n and thus also

P
(

ĝ(s1, . . . , sK) 6= g(s1, . . . , sK)
)

→ 0 , (21)

where g(s1, . . . , sK) =
∑K

i=1 ϕ̂i(si) and ĝ(s1, . . . , sK) = q−1(ĝ)
the corresponding estimate at the FC. Now, choose ĝ such that
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ψ
(

ĝ(s1, . . . , sK)
)

6= ψ
(

g(s1, . . . , sK)
)

. Then, it follows that the

particular choice of ĝ also implies ĝ(s1, . . . , sK) 6= g(s1, . . . , sK),
since ψ is a function. Summarizing all such outage events into

the sets A := {ĝ | ĝ(s1, . . . , sK) 6= g(s1, . . . , sK)} and B :=
{

ĝ |ψ
(

ĝ(s1, . . . , sK)
)

6= ψ
(

g(s1, . . . , sK)
)}

, we have B ⊆ A
and therefore P(B) ≤ P(A) due to the monotonicity of probability

and the measurability of ψ. Hence, we can conclude from (21) also

P
(

ψ
(

ĝ(s1, . . . , sK)
)

6= ψ
(

g(s1, . . . , sK)
))

= P(f̂ 6= f̃) → 0

exponentially fast in n. This in turn implies P(|f − f̂ | > ε) → 0 for

n → ∞, k and b sufficiently large and R < 1
2
log2(P/N), because

almost sure convergence implies convergence in probability. Since

ε > 0 was chosen arbitrary, this proves the theorem. �

Example 1. Let S be a subset of the nonnegative reals and let

the desired function be the geometric mean f(s1, . . . , sK) =
(
∏K

i=1 si
)1/K

. With the continuous pre-processing functions

ϕi(si) = loge(si), i = 1, . . . ,K, and the continuous (and there-

fore measurable) post-processing function ψ(g) = expe(g/K) is

f ∈ N(S
K). Thus, the geometric mean is according to Theorem 1

computable with arbitrary precision up to rate (17).

3.4. Number of Required Channel Uses

Due to technical reasons, we consider in the following a certain sub-

set of N(S
K) that results from requiring pre-processing functions to

be continuous and post-processing functions to be α-Hölder contin-

uous defined as follows [11].

Definition 9. A function h : D ⊆ R → R is called α-Hölder

continuous, or belongs to the function space C
0,α(D), if and only if

there exist positive real constants L and α, where 0 < α ≤ 1, such

that

∀x1, x2 ∈ D :
∣

∣h(x1)− h(x2)
∣

∣ ≤ L
∣

∣x1 − x2

∣

∣

α
. (22)

Accordingly, we define the following function space of interest:

N
0,α(SK) :=

{

f : SK → R

∣

∣

∣ ∃(ϕ1, . . . , ϕK , ψ) ∈ C
0(S)× · · ·

· · · × C
0(S)× C

0,α(R) : f(s1, . . . , sK) = ψ
(

∑K

i=1
ϕi(si)

)}

.

Remark 4. Unfortunately, N
0,α(SK) ⊂ N(S

K) is a nowhere dense

subset of C
0(SK), which can be deduced from [4, Thm. 2] and the

fact that α-Hölder continuity is stronger than (pointwise) continuity.

Theorem 2. Let f ∈ N
0,α(SK) be arbitrary. Then, for computing

f with a given sufficiently small precision ε > 0 over the Gaussian

MAC, the number of channel uses has to be

n > 2
log2

(

L⋆(πmaxK
2b2)αε−1

)

α log2(P/N)
, (23)

where L⋆ is the smallest possible constant in (22).

Proof. Let z :=
∑K

i=1 ϕi(si) and ẑ :=
∑K

i=1 ϕ̂i(si). Then, we

conclude from Remark 2 and (5) with the triangle inequality

|z − ẑ| ≤
∑K

i=1

∣

∣ϕi(si)− ϕ̂i(si)
∣

∣

< Kb−k+⌊logb(Kπmax)⌋+2

< πmaxK
2b−k+2 .

Since f ∈ N
0,α(SK) and therefore ψ ∈ C

0,α(R), we then have

|f − f̂ | =
∣

∣ψ(z)−ψ(ẑ)
∣

∣ ≤ L|z− ẑ|α < Lπα
maxK

2αb−α(k−2) ≤ ε

for sufficiently large k, b. Choosing L⋆ to be the smallest possible L
for ψ and taking the logarithm on the right hand side results in

1
α
log2

(

L⋆(πmaxK
2b2)α/ε

)

≤ k log2(b) = n
(

1
2
log2

(

P
N

)

− ξ
)

,

where the equality follows with ξ > 0 from (14) and Theorem 1.

Assuming ε to be sufficiently small ensures that k and b are large

enough. �

Example 2. Let the desired function be the Euclidean norm

f(s1, . . . , sK) =
√

∑K
i=1 s

2
i . Obviously is f ∈ N(S

K) with

ϕi(si) = s2i , i = 1, . . . ,K, and ψ(g) =
√
g. Since the pre-

processing functions are continuous and ψ is 1
2

-Hölder continuous,

we even have f ∈ N
0, 1

2 (SK).

Remark 5. Note that Theorem 2 is only a necessary condition for n.

3.5. Performance Comparison

As mentioned in the introduction, the standard approach for solv-

ing computation problems in sensor networks is to recover all sen-

sor readings at the FC to subsequently compute the desired function

value. For a simple comparison with the computation scheme de-

scribed above suppose that the FC aims at reliably recovering all the

pre-processed sensor readings instead. Therefore, the nodes employ

a standard multiple-access code, whereas the FC successively de-

codes all of the messages wi, i = 1, . . . ,K, with vanishing average

error probability at a maximum rate R = 1
2K

log2(1+
KP
N

) [7]. As

a result, the FC can compute any f ∈ N(S
K) within accuracy ε > 0

for sufficiently large message lengths at a rate that is approximately

K times smaller as the achievable rate in Theorem 1.

4. DISCUSSION

Communicating real-valued sensor readings with arbitrary precision

over a Gaussian channel generally fails due to the capacity that is

bounded away from infinity (i.e., for limited power and bandwidth).

The same applies if the objective is to compute precise function

values of those measurements with the advantage that the additive

structure of the Gaussian MAC can be exploited. For instance, if a

fixed pre-defined accuracy suffices, some linear and nonlinear nomo-

graphic functions can be computed considerably faster than with

any interference avoiding strategy. This results from the structure

of nomographic functions and the properties of nested lattice codes.

5. RELATION TO PRIOR WORK

Besides [2] and our own work, the computation of special functions

over a MAC is considered in for instance [12]–[15]. To achieve per-

formance gains, all of these works assume a structural match be-

tween the function to be computed and the operation the underlying

MAC naturally performs. In this context, the authors of [16] ana-

lyze how a corresponding mismatch impacts the performance gains

and they claim that for most pairs of desired functions and MACs

an interference avoiding strategy is optimal. Note that the pre- and

post-processing functions in this paper are used to settle mismatches

between the Gaussian MAC and nonlinear desired functions.

As already mentioned, Nazer and Gastpar propose in [6] a lattice

coding scheme that allows the reliable computation of linear combi-

nations of node messages. The same setting is in [17] extended to

transmitting nodes that can cooperate, which can lead to increased

computation rates.
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