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ABSTRACT
This paper considers joint estimation with multiple sensors
powered by energy harvesters in wireless sensor networks. In
particular, we focus on a network with K sensor nodes, which
communicate with a fusion center via K orthogonal channels
and power themselves by harvesting energy from the envi-
ronment. Assuming a deterministic energy-harvesting model
under which the harvested energy profile is known prior to
transmission, the worst-case mean-square error (MSE) min-
imization problem over a finite horizon of T estimation pe-
riods is investigated. We consider the cases that the sensors
have either infinite or finite battery capacity, and develop ef-
ficient iterative algorithms to compute the optimal power al-
location strategy, with numerical results presented to validate
our analysis.

Index Terms— Energy harvesting, joint estimation, power
allocation, mean-square error (MSE).

1. INTRODUCTION

Energy harvesters, which carry the capability to harvest en-
ergy from the environment [1], e.g., from wind or solar sources,
have been recognized as a low-cost and convenient solution to
provide almost unlimited lifetime for resource-limited wire-
less communication systems such as wireless sensor networks
(WSNs). However, compared to the case with conventional
time-invariant energy sources, energy replenished by harvesters
is intermittent and varying over time. As a result, wireless
devices powered by such renewable energy are subject to the
newly introduced energy-harvesting (EH) constraints over time:
The total energy consumed up to any time must be less than
the energy harvested by that time [2–6].

Single-snap shot estimation over a constant unknown pa-
rameter has been thoroughly investigated for the past years
(see [7] and the references therein). In this paper, we consider
the joint estimation across a finite number of T estimation
periods (over a time-varying unknown parameter). Moreover,
we assume a deterministic EH model [2–6], corresponding
to practical scenarios where the harvested energy levels can
be predicted with negligible errors over time, and leave the

more general random cases for the future study. We exam-
ine the optimal power allocation to minimize the worst-case
mean-square error (MSE) over the T estimation periods and
show that this problem is convex. Furthermore, we develop
efficient iterative algorithms to calculate the optimal solution.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the system model and summarizes the main
assumptions in this paper. Section 3 formulates the worst-
case MSE minimization problem, and develops iterative al-
gorithms to solve both of the cases with infinite and finite
battery capacity. Numerical results are presented in Section
4. Finally, Section 5 concludes the paper.

Notation: min {x, y} and max {x, y} denote the mini-
mum and maximum between two real numbers x and y, re-
spectively; (x)+ = min(x, 0).

2. SYSTEM MODEL

We consider a wireless sensor network with K sensors, con-
necting to one fusion center via K orthogonal channels, re-
spectively. At the fusion center, we intend to estimate a se-
quence of parameters {θ(t)}, t = 1, · · · , T , over T estima-
tion periods. Each estimation period consists of two time
slots: 1) EH slot, where each sensor harvests energy with
duration τE ; 2) transmission slot, where each sensor trans-
mits the observed signal to the fusion center with duration τ0.
During the transmission slot, no energy is harvested.

The input-output relationship during each transmission slot
is given as follows. The observation xk(t) for the t-th param-
eter θ(t) at the k-th sensor is given by

xk(t) = θ(t) + nk(t), t = 1, 2, · · · , T, (1)

where nk(t) is the independent and identically distributed (i.i.d.)
noise. In this paper, we assume that {θ(t)} are i.i.d. across t,
which also makes the results in this paper valid for the case
where they are correlated but with unknown prior statistic in-
formation. Moreover, it is assumed that θ(t) and nk(t) are
independent of each other with zero mean and variances σ2

θ

and σ2
k, respectively. As such, the local observation signal-to-

noise ratio (SNR) at the k-th sensor is defined as γk =
σ2
θ

σ2
k

.
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At each sensor, the amplify-and-forward (AF) strategy is
adopted, and the transmit power of the k-th sensor at time t
is given by Pk,t = α′

k,t

(
σ2
θ + σ2

k

)
= αk,t

(
1 + γ−1

k

)
, where

α′
k,t is the power amplifying factor and αk,t = α′

k,tσ
2
θ . By

denoting the fixed (over T periods) channel gains from the
k-th sensor to the fusion center as gk, k = 1, · · · ,K, the
received signal yk(t) at the fusion center from the k-th sensor
in the t-th estimation period is given by

yk(t) =
√
gkαk,txk(t) + wk(t), (2)

where wk(t) is the i.i.d. noise in the transmission slot of the
t-th estimation period and over the k-th channel, with zero
mean and variance ξ2k. For convenience, sk = gk/ξ

2
k is de-

fined as the link SNR between the k-th sensor and the fusion
center.

Since we intend to make the estimator universal (in the
sense of being independent of particular observation noise
distributions) and simple, the BLUE [7, 8] is adopted at the
fusion center. Then, the MSE of the k-th estimation period is
given as [7]

Var
[
θ̂(t)

]
= σ2

θ

(
K∑

k=1

αk,tsk

γ−1
k αk,tsk + 1

)−1

. (3)

In addition to the sequential estimation model, we assume
that the harvested energy at the k-th sensor, k = 1, · · · ,K,
within the EH slot of the t-th estimation period is known with
the amount Ek,t, t = 1, · · · , T . In this paper, we assume that
the consumed energy at each sensor other than the transmis-
sion energy is relatively small and thus negligible (or it can be
modeled as a constant that could be easily handled by our op-
timization framework). Thus, the amount of energy available
for each transmission is constrained by the following causal
EH constraints:(

1 + γ−1
k

)
τ0

j∑
t=1

αk,t ≤
j∑

t=1

Ek,t, ∀k, t. (4)

Furthermore, we assume that the battery capacity of each
sensor is B0. Without of loss of generality, we assume that
Ek,t ≤ B0 for ∀k, t. Similar to [5], we obtain the following
energy-storage constraints for j = 2, · · · , T ,

B0 ≥
j∑

t=1

Ek,t −
(
1 + γ−1

k τ0
) j−1∑
t=1

αk,t, ∀k. (5)

In particular, for the case of B0 = ∞, the constraints in (5)
become redundant.

3. PROBLEM FORMULATION AND OPTIMAL
SOLUTION

3.1. Problem Formulation

Considering T estimation periods, we could obtain T MSEs
Var[θ̂(t)], t = 1, · · · , T . For the purpose of exposition, we

adopt the worst-case MSE as the minimization objective, and
the worst-case MSE minimization problem over the sequence
of T estimations with the EH constraints can be written as:

(P1) min
{αk,t}

max
1≤t≤T

Var
[
θ̂(t)

]
s.t. (4), (5), αk,t ≥ 0, ∀ k and t.

By defining D = min1≤t≤T

∑K
k=1

αk,tsk

γ−1
k αk,tsk+1

, Problem
(P1) could be shown to have the same optimal solution as the
following problem

(P2) max
{αk,t},D

D

s.t.
K∑

k=1

αk,tsk

γ−1
k αk,tsk + 1

≥ D, ∀ t,

(4), (5), αk,t ≥ 0, ∀ k and t.

It is easy to check that Problem (P2) is convex [9]. To have
an efficient solution, we turn to an iterative algorithm, whose
main idea is summarized as follows. Fix the power profiles
at the other K − 1 sensors, and optimize over the power pro-
file belonging to the k0-th sensor, 1 ≤ k0 ≤ K; repeat the
above procedure until the pre-defined error tolerance is met.
The convex structure of the problem guarantees the conver-
gence of the above algorithm. At the i-th iteration, the power
allocation problem for the k0-th sensor could be cast from
Problem (P2) as:

(P3) max
{αi

k0,t},Di
Di (6)

s.t.
αi
k0,t

sk0

γ−1
k0

αi
k0,t

sk0 + 1
≥ Di −

∑
k ̸=k0

αi
k,tsk

γ−1
k αi

k,tsk + 1
, (7)

j∑
t=1

αi
k0,t ≤

1

(1 + γ−1
k0

)τ0

j∑
t=1

Ek0,t, (8)

j−1∑
t=1

αi
k0,t ≥

1(
1 + γ−1

k0

)
τ0

[
j∑

t=1

Ek0,t −B0

]
, (9)

αi
k0,t ≥ 0,∀ t, j, (10)

which will be shown efficiently solvable in the next two sub-
sections for both cases with infinite and finite battery capacity.
Note that in the iterative algorithm, αi

k0,t
’s could be initial-

ized by greedy power allocation: For each sensor, it trans-
mits with its maximum power available at each time slot, i.e.,
αk0,t =

Ek0,t(
1+γ−1

k0

)
τ0

.

Remark 3.1 Since Problem (P2) is convex, we conclude that
the solution provided by the above iterative algorithm will
converge to the optimal solution of Problem (P2) if the op-
timal solution of Problem (P3) can be obtained in each itera-
tion. In the following two subsections, we will show that this
requirement could be satisfied.
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3.2. Infinite Battery Capacity Case

In this subsection, we consider the case with infinite battery
capacity, i.e., constraints (9) are inactive all the time. Thus,
the power allocation problem for the k0-th sensor is given as
follows.

(P4) max
{αi

k0,t},Di
Di (11)

s.t. (7), (8), αi
k0,t ≥ 0,∀ t, (12)

The optimal power allocation of Problem (P4) can be ob-
tained by bi-section searching [9] over Di, 0 ≤ Di ≤ Dmax,
where Dmax can be obtained by using the greedy power al-
location. The main idea of the bisection search algorithm is
described as follows: For a given Di, we calculate the candi-
date power profile by letting (7) achieve with equality, i.e.

αi
k0,t = γk0s

−1
k0

·

γk0

Di −
∑
k ̸=k0

αi
k,tsk

γ−1
k αi

k,tsk + 1

+−1

− 1


−1

,

(13)

which provides the minimum power requirement in each es-
timation period to achieve the given target Di. As such, the
obtained {αi

k0,t
} in (13) is feasible for Problem (P4) if and

only if the EH constraints in (8) are satisfied. Then, if for a
given Di, (8) is true with the obtained {αi

k0,t
} in (13), we in-

crease Di in the next iteration; otherwise, we decrease Di in
the next iteration.

Remark 3.2 It is worth noting that with the above obtained
optimal power allocation {αi

k0,t
} for Problem (P4), the last

energy harvesting constraint in (8) may not be satisfied with
equality.

3.3. Finite Battery Capacity Case

For the finite battery capacity case, Problem (P3) has extra
energy-storage constraints (9) compared to the case in the
previous subsection. We propose a forward search algorithm
(summarized as Algorithm 1 in Table 1 to find the optimal
power allocation of Problem (P3), which is based on solving
a sequence of problems each with a similar form as Problem
(P4).

The main idea of Algorithm 1 is shown as follows. Start-
ing from the first period t0 = 1, search the estimation period
with the index t∗, after which the MSE related parameter Di

may change, i.e., from the t0-th to the t∗-th estimation pe-
riod, their corresponding MSEs keep identical while that of
the (t∗ + 1)-th estimation period is different. It is noted that
due to constraints (8) and (9), the consumed energy at the
k0-th sensor up to the m-th estimation period must be within

the interval
[∑m+1

t=1 Ek0,t −B0,
∑m

t=1 Ek0,t

]
. As such, con-

sider the following power allocation problem among the t0-th
to the m-th time slots, m = t0, · · · , T , with a modified har-
vested energy profile by adding an upper bound Ẽk0,m on the
total consumed energy at each estimation period and remov-
ing the consumed energy before the t0-th estimation period,
i.e.,

(P5.m) Di
m

(
Ẽk0,m

)
= max

{αi
k0,t},Di

Di, m = t0, · · · , T

s.t.
j∑

t=t0

αi
k0,t ≤

min
{
Ej , Ẽk0,m

}
− Et0

(1 + γ−1
k )τ0

,

(7), αk0,t ≥ 0, t0 ≤ t ≤ m, t0 ≤ j ≤ m,

where Ej =
∑j

t=1 Ek0,t is the harvested energy up to the j-th
estimation period, and Et0 is energy consumed up to the (t0−
1)-th estimation period with Et0 = (1+γ−1

k0
)τ0
∑t0−1

t=1 αk0,t.
It is worth noting that the optimal values of Problems

(P5.m) to (P5.T ) are nondecreasing functions of Ẽk0,m over[∑m+1
t=1 Ek0,t −B0,

∑m
t=1 Ek0,t

]
, since a larger Ẽk0,m al-

ways leads to a larger feasible set. Then, we define two sets
Di,up =

[
Di,up

t0 , · · · , Di,up
T

]
and Di,low =

[
Di,low

t0 , · · · , Di,low
T

]
,

where Di,up
m = Di

m (
∑m

t=1 Ek0,t), t0 ≤ m ≤ T , Di,low
m =

Di
m

(∑m+1
t=1 Ek0,t −B0

)
, t0 ≤ m ≤ T − 1, and Di,low

T =

Di,up
T . Thus, the MSE related parameter D̃i over the t0-th to

the t∗-th estimation periods should satisfy D̃i ∈
[
Di,low

t , Di,up
t

]
for t0 ≤ t ≤ t∗. In order to maximize D̃i, t∗ should be chosen
as

t∗ = arg max
t0≤j≤T

{
∩j
m=t0

[
Di,low

m , Di,up
m

]
̸= Φ

}
. (14)

Denote

Di
max = max∩t∗

m=t0

[
Di,low

m , Di,up
m

]
, (15)

Di
min = min∩t∗

m=t0

[
Di,low

m , Di,up
m

]
. (16)

Thus, if t∗ = T , we have D̃i = Di
max, and the optimal power

factor over the t0-th to the T -th time slots for Problem (P3) is
given by Problem (P5.T ) when Ẽk0,m =

∑T
t=1 Ek0,t; other-

wise, we have the following two cases:
1) If Di,low

t∗+1 > Di
max, we have D̃i = Di

max, t = t0, · · · , t∗, and
the optimal power factor over the t0-th to the t∗-th time slots
for Problem (P3) is given by Problem (P5.t∗) when Ẽk0,t∗ =∑t∗

t=1 Ek0,t;
2) If Di,up

t∗+1 < Di
min, we have D̃i = Di

min, t = t0, · · · , t∗, and
the optimal power factor over the t0-th to the t∗-th time slots
for Problem (P3) is given by Problem (P5.t∗) when Ẽk0,t∗ =∑t∗+1

t=1 Ek0,t −B0.
After checking the two cases, let t0 = t∗ + 1, and repeat

the above procedure until the end of the T estimation period.
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Table 1. Algorithm 1: Compute the optimal power allocation
for Problem (P3).
1. Let t0 = 1; repeat steps 2-4, until t0 = T .
2. Compute the vectors Di,up and Di,low by solving Problem
(P5.m), m = t0, · · · , T , by applying the same algorithm for
Problem (P4) and letting Ẽk0,m =

∑m
t=1 Ek0,t and Ẽk0,m =∑m

t=1 Ek0,t −B0, respectively.
3. Compute t∗, Di

max, and Di
min by using (14), (15), and (16),

respectively, and check that
3.1 If t∗ = T or Di,low

t∗+1 > Di
max, the optimal power fac-

tor αi
k0,t

, t = t0, · · · , t∗ is given by Problem (P5.t∗) when

Ẽk0,t∗ =
∑t∗

t=1 Ek0,t;
3.2 If t∗ < T and Di,up

t∗+1 < Di
min, the optimal power fac-

tor αi
k0,t

, t = t0, · · · , t∗ is given by Problem (P5.t∗) when

Ẽk0,t∗ =
∑t∗

t=1 Ek0,t −B0.
4. Let t0 = t∗ + 1;
5. Algorithm ends.

Proposition 3.1 The solution obtained by using Algorithm 1
is optimal to Problem (P3).

The proof will be given in the journal version [10]. With
the optimality of Algorithm 1, we can obtain the optimal power
allocation for Problems (P1) and (P2), which completes the
claim in Remark 3.1.

4. NUMERICAL RESULTS

In this section, we compare the proposed optimal offline power
allocation algorithm to a group of online algorithms, called
“q-step” look-ahead schemes (first proposed in [6] for the fad-
ing channels), for which the extension to the setup consid-
ered in this paper is straight forward: At the t-th estimation
period, use the current harvested energy information Ek,t,
1 ≤ k ≤ K, and the expected harvested energy informa-
tion Ẽk,t of the future q − 1 periods, i.e., Ẽk,t = E(Ek,i),
t < i ≤ min(t + q − 1, T ), and 1 ≤ k ≤ K, as the energy
profiles to compute the power allocation from the t-th to the
min(t + q − 1, T )-th estimation periods, and adopt the solu-
tion corresponding to the t-th estimation period as the power
allocation for the current period. For such online algorithms,
only the average harvested energy information is assumed to
be known.

For the purpose of exposition, we consider an i.i.d. Pois-
son energy arrival model, i.e. Pr {Ek,t = n · E0} = e−1

n! ,
where E0 is the average energy harvesting rate. For other
parameters, we assume that K = 8, T = 8, gk = 1, k =
1, · · · ,K, σ2

k = 0.2, i = 1, · · · ,K, and ξ2k = 0.5, k =
1, · · · ,K.

In Fig. 1, we plot the worst-case MSE performance versus
the battery capacity B0 for both the offline and online algo-
rithms, with E0 = 6 and q = 1, 2, or T (the case of q = 1
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Fig. 1. The maximum MSE performance as a function of
battery capacity B0, with E0 = 6.

is equivalent to the greedy power allocation). It is observed
that the worst-case MSE decreases as B0 increases. The per-
formances of the online algorithms with q = 2 and q = T
are close, while they perform better than the greedy power
allocation algorithm, especially when B0 is large.

5. CONCLUSION

In this paper, we studied the worst-case MSE minimization
problem over a finite number of estimation periods in wireless
sensor networks, where the power at each sensor is subject
to some deterministic EH and energy-storage constraints. We
proposed efficient iterative algorithms to compute the optimal
power allocation, by exploiting the convex problem structure.

6. RELATION TO PRIOR WORK

This work has focused on the worst-case MSE minimization
problem for joint estimation over a finite horizon of T es-
timation periods, and propose some efficient iterative algo-
rithms for both the cases with infinite and finite battery capac-
ity. Compared to the prior works for EH systems [2–6], this
work considers a completely new scenario for joint estimation
problem. On the other hand, we consider multiple-snap shot
estimation using energy harvester, while the works in [7] and
these references therein only studied single-snap estimation
without using energy harvester.
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