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ABSTRACT

This paper considers beamforming designs for weighted sum rate
maximization (WSRM) in a multiple-input single-output interfer-
ence channel subject to probability constraints on the rate outage.
We claim that the outage probability constrained WSRM problem is
an NP-hard problem, and therefore focus on devising efficient ap-
proximation methods. In particular, inspired by an insightful prob-
lem reformulation, a pricing-based sequential optimization (PSO)
algorithm is proposed for efficiently handling the considered out-
age constrained WSRM problem. We show that the proposed PSO
algorithm has semi-analytical beamforming solutions in each itera-
tion, and hence can be efficiently implemented. Moreover, the PSO
algorithm upon convergence attains a point satisfying Karush-Kuhn-
Tucker (KKT) conditions of the original outage constrained prob-
lem. Simulation results demonstrate that the proposed PSO algo-
rithm not only yields competing weighted sum rate performance, but
also is computationally more efficient than the existing method [1].

Index Terms— Interference channel, weighted sum rate maxi-
mization, outage probability, transmit beamforming

1. INTRODUCTION

Inter-cell cooperation has been recognized essential to improving
the spectral efficiency of wireless cellular networks [2]. Consider
a multiple-input single-output interference channel (MISO IFC) [3]
where K multi-antenna transmitters simultaneously communicate
with K single-antenna receivers over a common frequency band.
When instantaneous channel state information (CSI) is available at
the transmitters and the receivers employ single-user detection, it has
been shown that transmit beamforming is a Pareto optimal transmis-
sion strategy [3, 4]. However, finding such optimal beamformers in
practice is a difficult task. In fact, it has been shown that beamform-
ing design problems for maximizing a class of commonly used rate
utilities, (e.g., the weighted sum rate) are NP-hard in general [5].
Consequently, many research efforts have been devoted to investi-
gating computationally efficient approximation algorithms [5, 6].

Considering that it is not always feasible to obtain instantaneous
CSI, especially in fast fading scenarios, there are parallel works
that study the MISO IFC with only channel distribution information
(CDI) available at the transmitters [7, 8]. For example, assuming
that each MISO channel is (circularly symmetric) complex Gaussian
distributed, the authors in [7] characterized the structure of Pareto
optimal beamformers for an ergodic achievable rate region. The
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authors of [8, 9] instead considered an outage constrained scenario
where the probability of the rate outage is constrained to be no larger
than a predefined, usually small value. More specifically, the works
in [8, 9] studied the outage constrained achievable rate region for a
two-user MISO IFC, and presented a numerical method for attaining
the Pareto boundary. This method, however, has a complexity that
increases exponentially with the number of users.

In this paper, we assume that only CDI is available at the trans-
mitters, and study the beamforming design problem for weighted
sum rate maximization (WSRM) under outage probability con-
straints. The goal is to develop efficient algorithms for obtaining the
outage constrained optimal beamformers. However, our complexity
analysis shows that such outage constrained WSRM problem is in-
tricate – it is NP-hard in general. We thereby focus on devising effi-
cient approximation methods. By carefully inspecting the constraint
structure, we reformulate the original outage constrained problem
in a form that is analogous to the WSRM problem with instanta-
neous CSI in [5]. This insightful connection inspires us to propose
a pricing-based sequential optimization (PSO) algorithm [10] for
efficiently handling the considered outage constrained WSRM prob-
lem. We show that the proposed PSO algorithm improves the system
sum rate from iteration to iteration, and, upon convergence, reaches
a point satisfying the Karush-Kuhn-Tucker (KKT) conditions of
the original problem. Moreover, the subproblem involved in each
iteration has semi-analytical solutions which can be implemented
efficiently. The presented simulation results demonstrate that the
PSO algorithm is computationally more efficient than the previously
proposed distributed SCA (DSCA) algorithm in [1], though both
methods yield almost the same sum rate performance.

2. SIGNAL MODEL AND PROBLEM STATEMENT

We consider a MISO IFC consisting of K pairs of multiple-antenna
transmitters and single-antenna receivers. Each transmitter is
equipped with Nt antennae, and communicates with its intended
receiver using transmit beamforming. The transmit signal from
transmitter i is given by wisi, where si ∼ CN (0, 1) is the informa-
tion signal for receiver i, and wi ∈ C

Nt is the associated beamform-
ing vector, for i = 1, . . . ,K. Let hik ∈ C

Nt denote the channel
vector between transmitter i and receiver k, for all i, k = 1, . . . ,K.
Here, we assume that each hik ∼ CN (0,Qik) with Qik � 0

(positive semidefinite) denoting the channel covariance matrix. The
received signal at receiver i is then given by

xi = h
H
iiwisi +

K
∑

k=1,k 6=i

h
H
kiwksk + ni, (1)

4799978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



where ni ∼ CN (0, σ2
i ) is the additive noise at receiver i with vari-

ance σ2
i > 0. Assume that each receiver i decodes the informa-

tion signal si by single user detection, i.e., treating the cross-link
interference as noise. Then, the instantaneous achievable rate (in
nats/sec/Hz) of the ith transmitter-receiver pair is given by

ri
(

{hki}
K
k=1, {wk}

K
k=1

)

= log

(

1 +

∣

∣h
H
iiwi

∣

∣

2

∑

k 6=i |h
H
kiwk|

2
+ σ2

i

)

.

In this paper, we consider a scenario where the transmitters have
knowledge of CDI only, i.e., the channel covariance matrices Qik,
i, k = 1, . . . , K. Under such circumstance, given a transmission
rate Ri for the ith transmitter-receiver pair, receiver i may suffer
from rate outage, i.e., ri({hki}

K
k=1, {wk}

K
k=1) < Ri. Our goal is to

provide quality of service guaranteed within a tolerable outage prob-
ability for the receivers, while maximizing the system throughput
(i.e., the sum rate) at the same time. Specifically, given εi ∈ (0, 1)
as the maximum tolerable outage probability for each receiver i, we
consider the following beamforming design problem [1, 11]

max
wi∈C

Nt ,Ri≥0,
i=1,...,K

K
∑

i=1

αiRi (2a)

s.t. Prob
{

ri({hki}
K
k=1, {wk}

K
k=1) < Ri

}

≤ εi, (2b)

‖wi‖
2
2 ≤ Pi, i = 1, . . . ,K, (2c)

where α1, . . . , αK > 0 are priority weights, and P1, . . . , PK > 0
are the power constraints. Notice that, in (2b), the rate outage prob-
abilities are constrained to be no higher than εi, for i = 1, . . . ,K.

3. THE PROBLEM NATURE

It has been shown in [1, 12] that each of the outage constraints in
(2b) has an equivalent closed-form expression, given by

ρie

(2Ri−1)σ2

i

w
H
i

Qiiwi

∏

k 6=i

(

1+
(2Ri − 1)wH

k Qkiwk

wH
i Qiiwi

)

≤ 1, (3)

where ρi , 1 − εi, i = 1, . . . ,K. As one can see, the outage
constraint in (3) has a non-convex, complicated structure, and thus
solving (2) seems to be a challenging task. Therefore, a fundamental
question is whether the outage constrained problem (2) is indeed a
difficult problem in terms of computational complexity. The follow-
ing theorem provides the answer.

Theorem 1 Problem (2) is NP-hard in general.

In fact, one can show that problem (2) is NP-hard even when Nt = 1,
i.e., when only the transmit powers (without beamforming direction)
are optimized. The proof is to construct a polynomial time transfor-
mation from the Max-Cut problem, which is known to be NP-hard
[13], to problem (2), thereby implying the NP-hardness of the latter
problem. Due to space limit, we leave the detailed proof to our fu-
ture publication. It is worthwhile to note here that Theorem 1 can
be regarded as an outage constrained counterpart of the complex-
ity analysis result in [5, 14], where it was shown that the weighted
sum rate maximization (WSRM) problem with instantaneous chan-
nel state information (CSI) is NP-hard.

Theorem 1 implies that it is unlikely to globally solve problem
(2) in polynomial time. Therefore, it is necessary to consider approx-
imation methods, in order to deal with the cases wherein there are a
large number of transmitter-receiver pairs. In the next section, we
propose a pricing-based sequential (block coordinate) optimization
method for efficiently handling the considered problem (2).

4. PROPOSED PRICING-BASED ALGORITHM

4.1. Equivalent Formulation

Due to the complex constraint structure in (3), it is difficult to apply
general approximation methods to problem (2) (with (2b) replaced
by (3)) in its current form. In view of this, we present an alternative
formulation to problem (2) which, as one will see, reveals useful
insights for efficient approximation.

To this end, let us define

Φi(x|{wk}k 6=i) , ρie
σ2

i x
∏

k 6=i

(1 + (wH
k Qkiwk) · x). (4)

Then, (3) can be written as Φi((2
Ri − 1)/wH

i Qiiwi|{wk}k 6=i) ≤

1, i = 1, . . . , K. Furthermore, because both
∑K

i=1 αiRi and Φi are
strictly increasing in (R1, . . . , RK), it must be true that (3) holds
with equality for problem (2) at the optimal point, i.e.,

Φi

(

2Ri − 1

wH
i Qiiwi

∣

∣

∣

∣

{wk}k 6=i

)

= 1, i = 1, . . . ,K, (5)

On the other hand, each Φi(x|{wk}k 6=i) is strictly increasing in x;
therefore, there exists a unique positive value ξi({wk}k 6=i) such that
Φi(ξi({wk}k 6=i)|{wk}k 6=i) = 1. As a result, constraint (5) holds if
and only if

2Ri−1

wH
i Qiiwi

=ξi({wk}k 6=i), i = 1, . . . ,K. (6)

By (6), problem (2) can be concisely expressed as

max
wi∈C

Nt

i=1,...,K

K
∑

i=1

αi log(1 + ξi({wk}k 6=i)w
H
i Qiiwi) (7a)

s.t. ‖wi‖
2 ≤ Pi, i = 1, . . . ,K, (7b)

There are two interesting observations from (7). Firstly, one can
observe that each ξi({wk}k 6=i), though being implicit, characterizes
the impact of cross-link interference plus noise on receiver i, for i =
1, . . . ,K. Secondly, by comparing (7) with its instantaneous-CSI
counterpart in [5, Eqn. (3)], there is an intriguing analogy between
the two problems in mathematical formulation. This motivates us
to use a pricing-based sequential optimization (PSO) method, which
was used in [10, 15] for the instantaneous-CSI case [5, Eqn. (3)], for
handling the outage constrained problem (2) in the subsequent two
subsections.

4.2. Pricing-based Sequential Optimization Algorithm

The proposed PSO algorithm for problem (2) is an iterative algo-
rithm which optimizes the beamforming vectors w1, . . . ,wK in a
round-robin fashion. Specifically, in an iteration for optimizing wi,
given a set of w̄1, . . . , w̄K (that are feasible to (7b)), we seek to
update w̄i by solving the following problem

max
wi

log(1 + ξi({w̄k}k 6=i)w
H
i Qiiwi)−

∑

k 6=i

πikw
H
i Qikwi

s.t. ‖wi‖
2≤Pi, (8)

where ξi({w̄k}k 6=i) is the unique solution to Φi(x|{w̄k}k 6=i) = 11.
The terms −πikw

H
i Qikwi, k 6= i, respectively weighted by the unit

1Since Φi(x|{w̄k}k 6=i) in (4) is strictly increasing in x, and
Φi(ξi({w̄k}k 6=i)|{w̄k}k 6=i) = 1. The value ξi({w̄k}k 6=i) can easily be
obtained via a bisection method.

4800



prices {πik}k 6=i, in the objective function imply that the throughput
of user i is maximized at the cost of the interference induced by
transmitter i to the other receivers. For notational simplicity, let us
denote

Iik , w
H
i Qikwi (Īik , w̄

H
i Qikw̄i)

for all i, k = 1, . . . ,K. Furthermore, define

U({Ij`}
K
j,`=1) ,

K
∑

i=1

αi log(1 + ξi({Iki}k 6=i)Iii) (9)

as an alternative expression of the objective function of (7), where
ξi({Iki}k 6=i) , ξi({wk}k 6=i) (by (4), (5) and (6)) for all i =
1, . . . , K. According to [10, 15], the unit prices are given by

πik = −
1

αi

∂U({Ij`}
K
j,`=1)

∂Iik

∣

∣

∣

∣

∣

Ij`=Īj` ∀j,`

(10)

for all k 6= i. Specifically, by (9) and by applying the implicit func-
tion theorem [16] for computing the gradient of ξk({Ijk}j 6=k) with
respect to Iik, one can show that πik has an explicit form as

πik =
αk

αi

Īkkξk({Ījk}j 6=k)

1 + Īkkξk({Ījk}j 6=k)

[(

σ2
k+
∑

` 6=i,k

Ī`k
1 + Ī`kξk({Ījk}j 6=k)

)

×
(

1+Īikξk({Ījk}j 6=k)
)

+Īik

]−1

. (11)

The detailed description of our proposed PSO algorithm for handling
problem (7) (i.e., problem (2)) is presented in Algorithm 1.

Algorithm 1 Proposed PSO algorithm for problem (7)
1: Given an initial set of w̄1, . . . , w̄K satisfying (7b);
2: Set Īik := w̄

H
i Qikw̄i ∀i, k = 1, . . . ,K, and compute

ξk({Ījk}j 6=k), k = 1, . . . ,K, by bisection;
3: repeat
4: for i = 1, . . . , K do
5: Compute the unit prices {πik}k 6=i by (11);
6: Solve problem (8) by Proposition 2 below to obtain an

optimal solution w
?
i , followed by updating w̄i with w

?
i ;

7: Update Īik = w̄
H
i Qikw̄i, k = 1, . . . , K, and compute

ξk({Ījk}j 6=k), k = 1, . . . ,K;
8: end for
9: until the predefined stopping criterion is met.

10: Output (w̄1, . . . , w̄K) as an approximate solution to (7).

While Algorithm 1 seems to be a straightforward application of
the pricing-based method in [10, 15] to problem (7), it is actually
not obvious to see whether Algorithm 1 can reach any interesting
point of problem (7). This is mainly because ξ1({Ik1}k 6=1), . . . ,
ξK({IkK}k 6=K) are implicit. To answer the above question, let us
analyze the relation between problem (8) and the original problem
(7). The following lemma is needed in the subsequent analysis.

Lemma 1 For each i ∈ {1, . . . ,K} and k ∈ {1, . . . ,K}\{i},
the individual rate log(1 + ξk({Ijk}j 6=k)Ikk) is strictly convex in
Iik ≥ 0 for any given {Ijk ≥ 0}j 6=i.

The proof of Lemma 1 is presented in the Appendix. By Lemma 1,
(10), and by the first-order condition of convex functions, we have

αk log
(

1 + ξk({Ījk}j 6=k,i, Iik)Īkk
)

≥ αk log(1 + ξk({Ījk}j 6=k,i, Īik)Īkk)− αiπik(Iik − Īik),

for all k ∈ {1, . . . ,K}\{i}. Hence, it follows from (9) and the
above inequality that

U(Ii1, . . . , IiK , {Īj1, . . . , ĪjK}j 6=i)

≥ αi log(1 + ξi({Īki}k 6=i)Iii)− αi

∑

k 6=i

πik(Iik − Īik)

+
∑

k 6=i

αk log(1 + ξk({Ījk}j 6=k,i, Īik)Īkk) (12)

, U
(i)
LB({Ii`}

K
`=1

∣

∣{Īj1, . . . , ĪjK}j 6=i).

Since the sum of the first two terms on the right hand side of (12) is
proportional to the objective function in (8), optimizing problem (8)
for user i is equivalent to maximizing the lower bound U

(i)
LB.

More importantly, one can check that U (i)
LB is locally tight, in the

sense that

U
(i)
LB({Īi`}

K
`=1

∣

∣{Īj1, . . . , ĪjK}j 6=i) = U({Īj`}
K
j,`=1), (13)

for i = 1, . . . ,K. Therefore, using an argument similar to [15,
Lemma 1], one can show that the weighted sum rate U({Īj`}

K
j,`=1)

achieved by w̄1, . . . , w̄K in Algorithm 1 would be non-decreasing
from one iteration to another. This, together with the fact that
U({Īj`}

K
j,`=1) is bounded due to the power constraints (7b), implies

that U({Īj`}
K
j,`=1) eventually converges. Further, U (i)

LB has locally
tight gradients, i.e.,

∂U
(i)
LB({Īi`}

K
`=1

∣

∣{Īj1, . . . , ĪjK}j 6=i)

∂Iik
=

∂U({Īj`}
K
j,`=1)

∂Iik
, (14)

for all k, i = 1, . . . ,K. This property can be exploited to show
that Algorithm 1, upon the convergence of (w̄1, . . . , w̄K), attains
a point satisfying the KKT conditions of problem (7). The detailed
derivations are omitted here due to space limitation. We summarize
the above analyses in the following proposition.

Proposition 1 The weighted sum rate U({Īj`}
K
j,`=1) achieved in

each iteration of Algorithm 1 converges monotonically. Moreover,
any convergent point of (w̄1, . . . , w̄K) is a KKT point of (7).

4.3. Efficient Implementation of PSO Algorithm

An important aspect regarding the computational complexity of Al-
gorithm 1 depends on solving the nonconvex problem (8) efficiently.
A similar problem was studied in [10] for the WSRM problem with
instantaneous CSI; however, the approach to handling such problem
is via linear approximation, and hence is suboptimal. We herein pro-
vide the global optimal solution to problem (8) in a semi-analytical
form.

The proposed approach is based on the popular semidefinite re-
laxation (SDR) technique [17]. In particular, we relax the rank-one
matrix wiw

H
i to a rank-unconstrained positive semidefinite matrix

Wi � 0, and consider the following convex problem

max
Wi�0

log
(

1+ξi({Īki}k 6=i)Tr(WiQii)
)

−Tr
(

Wi

∑

k 6=i

πikQik

)

s.t. Tr(Wi)≤Pi. (15)

A key finding is that the SDR problem (15) has a rank-one optimal
solution, as stated in the following proposition.
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Proposition 2 Let µ?
i ≥ 0 denote the optimal dual variable asso-

ciated with the power constraint in (15), and let Ri = µ?
i INt +

∑

k 6=i πikQik, where INt is an Nt×Nt identity matrix. Then, there

exists a principal eigenvector of R−1/2
i QiiR

−1/2
i , denoted by ν

?
i ,

such that W?
i = w

?
i (w

?
i )

H is optimal to problem (15), where

w
?
i =

√

p?iR
−1/2
i ν

?
i (optimal to problem (8))

p?i = max
(

1− [λ?
i ξi({Īki}k 6=i)]

−1, 0
)

,

and λ?
i is the maximum eigenvalue of R−1/2

i QiiR
−1/2
i .

The proof of Proposition 2 is omitted due to space limitation.
It can be shown that µ?

i can be computed by simple bisection, and
thus w

?
i can be obtained efficiently. More specifically, since the

major computation load of computing w
?
i lies in matrix inversion

and eigenvalue decomposition, each having a complexity order of
O(N3

t ), the complexity order of solving (8) is roughly given by
O(N3

t log(1/ε1)), where ε1 > 0 is the solution accuracy of the
bisection search for µ?

i . As a result, the overall complexity order
of Algorithm 1 is κ1KO(N3

t log(1/ε1)), where κ1 denotes the to-
tal number of round-robin iterations (steps 3 to 8 in Algorithm 1).
Note that, for the DSCA algorithm in [1], the subproblem for each
transmitter is implemented by interior-point methods. Hence, the
DSCA algorithm has an overall complexity order of κ2KO((N6.5

t +
K3.5) log((Nt + K)/ε2)) where κ2 is the total number of round-
robin iterations and ε2 > 0 is the solution accuracy of interior-point
methods [18]. One can see that the complexity order of PSO algo-
rithm is lower than that of the DSCA algorithm. Thus, it is expected
that the PSO algorithm is computationally more efficient than the
DSCA algorithm, which will be verified by our simulation results.

5. SIMULATION RESULTS AND DISCUSSIONS

For simplicity, we set σ2
1 = · · · = σ2

K , σ2 and P1 = · · · =
PK = 1. The tolerable outage probability is set to 10%, i.e., ε1 =
· · · = εK = 0.1. The channel covariance matrices {Qik}

K
i,k=1 are

randomly generated with full rank, and the maximal eigenvalues of
{Qik}

K
i,k=1 are normalized to λmax(Qii) = 1 and λmax(Qik) = η

for all k 6= i; therefore, 0 ≤ η ≤ 1 reflects the strength of cross-
link channels. Algorithm 1 stops when the difference between the
weighted sum rates U({Īj,`}

K
j,`=1) of two consecutive round-robin

iterations is no larger than 0.1% of that in the previous iteration. All
simulation results are averaged over 500 realizations of {Qik}

K
i,k=1,

and, for each problem instance, both the PSO and DSCA algorithms
are initialized at a randomly generated feasible point.

We first examine the efficacy of the PSO algorithm by compar-
ing it with the DSCA algorithm in [1] and the naive maximum-ratio
transmission (MRT) strategy. Figure 1 shows the average weighted
sum rate versus 1/σ2 for K = Nt = 4. It can be seen that the PSO
algorithm and the DSCA algorithm yield almost the same weighted
sum rate performance, and both outperform the MRT strategy.

In Fig. 2, we compare the average computation time (in seconds)
of the PSO algorithm and the DSCA algorithm versus the number of
users K, for 1/σ2 = 10 dB, η = 0.5, and Nt = 4 and 8. The sub-
problems involved in the DSCA algorithm are handled by CVX [19].
Note that the computation time of the PSO algorithm increases al-
most linearly with K, whereas that of the DSCA algorithm increases
much faster with K. According to Fig. 2, the PSO algorithm is about
103 times faster than the DSCA algorithm.

6. APPENDIX: PROOF OF LEMMA 1

We show that ∂ log(1 + ξk({Ijk}j 6=k)Ikk)/∂Iik is strictly increas-
ing in Iik ≥ 0, which implies that log(1+ξk({Ijk}j 6=k)Ikk) is con-
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Fig. 1. Average achievable sum rate versus 1/σ2 for K = Nt = 4,
and rank(Qki) = 4 for all k, i.
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Fig. 2. Average computation time of the PSO algorithm and the
DSCA algorithm versus K, for Nt = 4, 8, 1/σ2 = 10 dB, and
η = 0.5.

vex in Iik ≥ 0 [18], using the two properties of ξk({Ijk}j 6=k): 1)
ξk({Ijk}j 6=k) is strictly decreasing in Iik ≥ 0; 2) Iik ·ξk({Ijk}j 6=k)
is strictly increasing in Iik ≥ 0.

To prove the first property, observe from (4) that Φk(x|{Ijk}j 6=k)
is strictly increasing in x > 0 and Iik ≥ 0. Thus, the function
ξk({Ijk}j 6=k), which satisfies Φk(ξk({Ijk}j 6=k)|{Ijk}j 6=i) = 1
uniquely, is strictly decreasing in Iik ≥ 0. To show the second prop-
erty, suppose that I ′ik < I ′′ik, and define ξ′k = ξk({Ijk}j 6=i,k, I

′
ik)

and ξ′′k = ξk({Ijk}j 6=i,k, I
′′
ik). By the definition of ξk({Ijk}j 6=k),

we have Φk(ξ
′
k|{Ijk}j 6=i,k, I

′
ik) = Φk(ξ

′′
k |{Ijk}j 6=i,k, I

′′
ik) = 1.

Moreover, ξ′k > ξ′′k by the first property. Therefore, the following
chain holds

1 =ρk exp(σ
2
kξ

′
k)(1 + I ′ikξ

′
k)
∏

` 6=i,k

(1 + I`kξ
′
k) (by (4))

=ρk exp(σ
2
kξ

′′
k )(1 + I ′′ikξ

′′
k )
∏

` 6=i,k

(1 + I`kξ
′′
k )

<ρk exp(σ
2
kξ

′
k)(1 + I ′′ikξ

′′
k )
∏

` 6=i,k

(1 + I`kξ
′
k)

which implies I ′ikξ
′
k < I ′′ikξ

′′
k . By these two properties, and by (11)

and the fact of ∂ log(1 + ξk({Ijk}j 6=k)Ikk)/∂Iik = − αi

αk
πik (see

(9) and (10)), one can verify that ∂ log(1+ ξk({Ijk}j 6=k)Ikk)/∂Iik
is strictly increasing in Iik ≥ 0. This completes the proof. �
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