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ABSTRACT

We investigate the chunk-based resource allocation for OFDMA down-
link, where data streams contain packets with diverse bit-error-rate
(BER) requirements. Supposing adaptive transmissions based on a
number of discrete modulation and coding modes, we derive the op-
timal scheme that maximizes the weighted sum of average user rates
under the multiple BER and total power constraints. With the rel-
evant optimization problem cast as an integer linear program, we
show that the optimal strategy can be obtained through Lagrange
dual-based gradient iterations with fast convergence and low compu-
tational complexity per iteration. Furthermore, a novel on-line algo-
rithm is developed to approach the optimal strategy without knowl-
edge of intended wireless channels a priori.

Keywords: Chunk-based resource allocation, OFDMA, Lagrange
dual approach, stochastic optimization.

1. INTRODUCTION

Efficient resource allocation for diverse data streams in high-speed
environment has attracted interest in the next-generation wireless
network design. Since orthogonal frequency division multiple-access
(OFDMA) can convert the frequency selective channel to multiple
flat fading channels and eliminate inter-symbol interference in broad-
band channels, it has been widely adopted for wireless applications
in high-speed (railway) systems [1].

Resource allocation for OFDMA networks has attracted a grow-
ing research interest [2, 3]. Most of the prior works assumed that in-
dividual subcarriers can be assigned to a user. In practical OFDMA
systems, however, single-subcarrier based allocation schemes incur
significant signaling overhead and entail complicated implementa-
tion [4]. To mitigate these defects, the correlation between adjacent
subcarriers is utilized in wireless standards by grouping a set of sub-
carriers into one chunk, and making a chunk as the minimum alloca-
tion unit. Resource allocation for the chunk-based OFDMA systems
was addressed in [5, 6], where heuristic algorithms were proposed
to maximize the total throughput. Optimal chunk allocation strate-
gies were developed to maximize a utility function of average user
rates for a wireless OFDMA system under different power control
policies in [7], where it is assumed that continuous rate adaptation
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up to Shannon’s limit can be supported. With practical modulation
schemes employed for rate adaptation, a recent work [1] proposed a
heuristic algorithm to minimize the total transmit power for real-time
data streams with multiple bit-error-rate (BER) requirements.

In this paper, we investigate the chunk-based resource allocation
for OFDMA downlink, where data streams contain packets with di-
verse BER requirements. Supposing that adaptive transmissions are
based on a number of discrete modulation and coding modes, we
derive the optimal resource allocation scheme that maximizes the
weighted sum of average user rates under the multiple BER and to-
tal power constraints. Specifically, we formulate the intended opti-
mization problem as an integer linear program (ILP). Provided that
the ergodic wireless fading process has a continuous cumulative dis-
tribution function (cdf), we show that the optimal strategy for this
problem adopts a greedy approach, and it can be obtained through
Lagrange dual-based gradient iterations with fast convergence and
low computational complexity per iteration. Relying on the stochas-
tic optimization tools, we further develop an on-line algorithm capa-
ble of dynamically learning the underlying channel distribution and
asymptotically approaching the optimal strategy without knowledge
of intended wireless channels a priori.

2. SYSTEM MODELS

We consider a downlink OFDMA system consisting of an access
point (AP) and K wireless users k = 1, · · · ,K. The overall band-
width B is divided into M × J orthogonal narrowband subcarriers,
each with sub-bandwidth △f = B/(MJ) small enough for each
subcarrier to experience only flat fading. As pre-determined by the
practical systems or wireless standards, the subcarriers are grouped
into M chunks. Each chunk m consists of J adjacent subcarriers
j = (m − 1)J + 1, . . . ,mJ . The data streams from the AP to
users contain packets with different quality of service requirements,
e.g., video streams consisting of the base and enhancement layers of
packets [8], where the base layer is to provide coarse visual qual-
ity whereas enhancement layers are to enhance visual quality when
the base layer is available. The reliable transmission of the base
layer is clearly important and it should have a high quality (HQ), i.e.,
smaller BER, requirement than the enhancement layers with relative
low quality (LQ) requirements. For this reason, we assume that each
data stream has two types of packets: HQ and LQ packets, which
are queued into two separate buffers (i.e., queues 0 and 1) with dif-
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ferent BER requirements ϵ̌(0) and ϵ̌(1) (ϵ̌(0) ≤ ϵ̌(1)), respectively. In
addition, depending on the given encoding and decoding schemes, a
constant ratio η needs to be maintained between the numbers of HQ
and LQ packets of the same data stream delivered to each user.

Let hk,n denote the frequency-domain channel coefficient for
the kth user over the nth subcarrier, k = 1, . . . ,K, n = 1, . . . ,MJ .
Assume a block fading model, where the fading coefficients h =

{h(j)
k,n, k = 1, . . . ,K, n = 1, . . . ,MJ} are fixed per (coherent

time) slot n, but are allowed to change randomly from slot to slot
according to a stationary and ergodic random process with a contin-
uous cdf. The wireless channel is assumed to be frequency selective,
and the correlation coefficient between any two, say the n1th and
n2th subcarriers per user k, is given by [9]:

ρn1,n2 = E{h∗
k,n1

hk,n2} =
1√

1 + ( (n1−n2)△f
fc

)2
(1)

where fc is the channel coherence bandwidth, and △f is the fre-
quency separation between two adjacent subcarriers.

Relying on a finite set of modulation and coding pairs (modes),
adaptive modulation and coding (AMC) is adopted by the AP for
downlink transmission with rate ρl, l = 1, . . . , L. For a given chan-
nel power gain γk,n = |hk,n|2 and the transmit-power πk,n, let
ϵk,n,l(γk,nπk,n) denote the instantaneous BER for the transmission
to the kth user over the nth subcarrier when the lth mode is em-
ployed. Assuming without loss of generality that the additive white
Gaussian noise (AWGN) at the receiver has unit variance, it is known
that ϵk,n,l can be approximated in a closed form [10]:

ϵk,n,l(γk,nπk,n) ≃ κ1 exp(−
κ2γk,nπk,n

2ρl − 1
) (2)

where κ1 and κ2 are mode-dependent constants.
Consider the case that γk,n are highly correlated to each other

within a chunk. Then it was proven that the average channel gain
γk,m ≃ 1

J

∑mJ
n=(m−1)J+1 γk,n, can be used to calculate the average

BER across the subcarriers for the chunk m; i.e., with a power πk,m

per subcarrier, the average BER for transmission to the kth user with
the lth AMC mode over the mth chunk is given by ϵ̄(k,m, l) ≃
κ1 exp(−

κ2γk,mπk,m

2ρl−1
) [1]. To meet the prescribed BER require-

ment ϵ̌(q), q = 1, 2, for the HQ or LQ data packets, we can then
solve the equation ϵ̄(k,m, l) = ϵ̌(q) to obtain the minimum transmit-
power required for each (k,m, l, q) quadruplet as:

π
(q)
k,m,l(γ) := π

(q)
k,m,l(γk,m) = (

Γ(q)

γk,m
)(2ρl − 1) (3)

where Γ(q) := κ−1
2 ln( κ1

ϵ̌(q)
).

For notational convenience, in addition to AMC modes l =

1, . . . , L with non-zeros rates ρl > 0, we let l = 0 mode to de-
note no transmission, thus ρ0 = π

(q)
k,m,l(γ) = 0, ∀k,m,γ.

3. OPTIMAL CHUNK-BASED RESOURCE ALLOCATION

Upon channel realization γ, let α(q)
k,m,l(γ) be the chunk allocation

decision for transmission of packets from the kth user’s qth (i.e., HQ
or LQ) queue with the lth mode over chunk m, and let α(γ) :=

{α(q)
k,m,l(γ), k = 1, · · · ,K, m = 1, · · · ,M, , l = 0, · · · , L, q =

0, 1}. We consider that only packets from one queue can be chosen
to be transmitted with a single mode when user k is scheduled for
transmission over chunk m. In addition, at most one user can be
allocated to a single chunk m (m = 1, · · · ,M ) in practical systems.
This then implies an exclusive chunk allocation; i.e.,

α
(q)
k,m,l(γ) ∈ {0, 1},

K∑
k=1

L∑
l=0

1∑
q=0

α
(q)
k,m,l(γ) = 1, ∀m. (4)

Let A denote the set of all chunk schedules satisfying the latter con-
straints. For a given chunk schedule α, the average HQ, LQ and
total data rates for user k = 1, . . . ,K are:

r̄HQ
k (α) = Eγ

[ M∑
m=1

L∑
l=0

α
(0)
k,m,l(γ)Jρl

]
, (5)

r̄LQ
k (α) = Eγ

[ M∑
m=1

L∑
l=0

α
(1)
k,m,l(γ)Jρl

]
, (6)

r̄k(α) = r̄HQ
k + r̄LQ

k = Eγ

[ M∑
m=1

L∑
l=1

1∑
q=0

α
(q)
k,m,lJρl

]
, (7)

and the total power spent for downlink transmissions is:

P̄ (α) = Eγ

[ K∑
k=1

M∑
m=1

L∑
l=0

1∑
q=0

α
(q)
k,m,l(γ)Jπ

(q)
k,m,l(γ)

]
, (8)

where Eγ [·] denotes expectation over fading realization γ.
The AP is to decide the optimal schedule α ∈ A that maximizes

the weighted sum of average user rates; i.e., we wish to solve:

max
α∈A

K∑
k=1

wkr̄k(α)

s. t. P̄ (α) ≤ P̌ , r̄HQ
k (α) = ηr̄LQ

k (α), ∀k

(9)

where wk is the given priority weight for user k, P̌ is the total power
budget at the AP, and η is the prescribed HQ-LQ packet ratio that
needs to be maintained for all users.

After proper formulation, it follows from (4)–(9) that the prob-
lem becomes an ILP. We next show that this ILP can be efficiently
solved through dual-based Lagrange approach.

3.1. Lagrange Dual Approach

Let λ denote the Lagrange multiplier associated with the power con-
straint, and let µ := {µk, ∀k} collect the Lagrange multipliers as-
sociated with HQ-LQ ratio constraints. With the convenient notation
Λ := {λ, µ}, the Lagrangian function of (9) becomes:

L(α,Λ) =

K∑
k=1

wk r̄k(α)−λ[P̄ (α)−P̌ ]−
K∑

k=1

µk[r̄
HQ
k (α)−ηr̄LQ

k (α)]

(10)
The Lagrange dual function is then given by:

D(Λ) = max
α∈A

L(α,Λ), (11)

and the dual problem of (9) is :

min
Λ

D(Λ). (12)
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Upon defining:

φ
(q)
k,m,l(Λ;γ) :=

{
wkJρl − λJπ

(0)
k,m,l(γ)− µkJρl, q = 0,

wkJρl − λJπ
(1)
k,m,l(γ) + µkηJρl, q = 1,

(13)
the Lagrangian (10) can be rewritten as:

L(α,Λ) = λP̌ + Eγ

[ M∑
m=1

{∑
k,l,q

α
(q)
k,m,l(γ)φ

(q)
k,m,l(Λ;γ)

}]
.

For a given Λ, the dual-optimal α∗(Λ) then solves per γ:

max
α∈A

M∑
m=1

{∑
k,l,q

α
(q)
k,m,l(γ)φ

(q)
k,m,l(Λ;γ)

}
Under the constraints α

(q)
k,m,l(γ) ∈ {0, 1} and

∑
k,l,q α

(q)
k,m,l(γ)

= 1 per m, clearly the optimal chunk allocation should adopt a
“winner-takes-all” strategy; i.e., chunk m is assigned to a triplet

{k∗
m, l∗m, q∗m}(Λ;γ) = arg max

(k,l,q)
φ

(q)
k,m,l(Λ;γ), ∀m. (14)

Lemma 1 To maximize L(α,Λ) for a given Λ in (11), the optimal
chunk allocation at AP amounts to a greedy strategy:{

α
(q)∗
k,m,l(Λ;γ) = 1, {k, l, q} = {k∗

m, l∗m, q∗m}(Λ;γ),

α
(q)∗
k,m,l(Λ;γ) = 0, otherwise;

(15)

where the “winner” {k, l, q} = {k∗
m, l∗m, q∗m}(Λ;γ) per chunk m

per fading realization γ is chosen from (14).

Lemma 1 states that the optimal chunk schedule α
(q)∗
k,m,l(Λ;γ)

admits a greedy policy, where φ
(q)∗
k,m,l(Λ;γ) can be seen as net-

reward (reward minus cost) that packet transmission from the kth
user’s qth queue with the lth mode can obtain over the chunk m per
γ. Comparing with net-rewards across users, modes, and queues,
chunk m is then assigned to the triplet {k∗

m, l∗m, q∗m}(Λ;γ) with the
largest net-reward.

With α∗(Λ) from Lemma 1 for a given Λ, the dual problem in
(12) can be solved through the subgradient iterations. Define

g(α) := [P̌−P̄ (α), ηr̄LQ
1 (α)−r̄HQ

1 (α), . . . , ηr̄LQ
K (α)−r̄HQ

K (α)]T .

Using α∗(Λ), it can be shown that g(α∗(Λ)) is a (sub-)gradient of
dual function D(Λ). Therefore, the dual problem (12) can be solved
through the following (sub-)gradient descent iteration[11]:

Λ[n+ 1] = [Λ[n]− βg(α∗(Λ[n]))]+; (16)

specifically, we have (with short-hand notation α∗[n] := α∗(Λ[n])):

λ[n+ 1] =
[
λ[n] + β

(
P̄ (α∗[n])− P̌

)]+
µk[n+ 1] = µk[n] + β(r̄HQ

k (α∗[n])− ηr̄LQ
k (α∗[n]))

(17)

where β is a small stepsize, n is iteration index, and [x]+ = max(0, x).
Convergence of gradient iteration (17) to the optimal Λ∗ := {λ∗,µ∗}
for (12) is guaranteed from any initial Λ[0] ≥ 0 [11].

Since (9) is a (non-convex) ILP, there may exist a non-zero du-
ality gap; therefore, solving the dual problem (12) via dual-based
sub-gradient iterations (17) may not yield the optimal solution for
(9). However, under the condition that random fading γ has a con-
tinuous cdf, we can mimic the proof of [7, Proposition 1] to show:

Proposition 1 For ergodic fading process with a continuous cdf, prob-
lem (9) has a zero-duality gap with its dual (12), and the almost
surely optimal solution for (9) is given by {α∗(Λ∗;γ), ∀γ}, where
Λ∗is obtained from (17) with any initial Λ[0] ≥ 0.

3.2. Stochastic Chunk Allocation

From Proposition 1, the dual-gradient iteration (17) can yield the
globally optimal resource allocation strategy for (9) under condi-
tion. To implement (17), a-priori knowledge of channel cdf should
be available, only with which we can evaluate the average rates
r̄HQ
k (α∗(Λ)), r̄LQ

k (α∗(Λ)) and average power P̄ (α∗(Λ)) in (17).
However, practical applications motivate resource allocation schemes
that can operate without the knowledge of channel cdf, but approach
the optimal strategy by “learning” channel statistics on-the-fly.

To this end, we rely on a stochastic optimization paradigm [3,
12] to develop a stochastic gradient iteration from (17) as follows.
Given a Lagrange multiplier vector Λ and the fading realization γ[n]

per slot n, the AP transmits in accordance with the chunk allocation
strategy (15). After transmissions, it collects the values of instanta-
neous powers per chunk m:

Pm(Λ;γ[n]) = Jπ
(q∗m)

k∗
m,m,l∗m

(Λ;γ[n]), (18)

and instantaneous HQ-LQ balance at chunk m per user k:

Qk,m(Λ;γ[n]) =


Jρl∗m if k = k∗

m & q∗m = 0,

−ηJρl∗m if k = k∗
m & q∗m = 1,

0 if k ̸= k∗
m;

(19)

where we omit the dependence of {k∗
m, l∗m, q∗m} on (Λ;γ[n]).

With {Pm(Λ̂[n];γ[n]), Qk,m(Λ̂[n];γ[n])} collected at the end
of slot n, we propose that the AP implements the following stochas-
tic gradient descent iterations:

λ̂[n+ 1] = [λ̂[n] + β(

M∑
m=1

Pm(Λ̂[n];γ[n])− P̌ )]+

µ̂k[n+ 1] = µ̂k[n] + β

M∑
m=1

Qk,m(Λ̂[n];γ[n]), ∀k

(20)

where hats are to stress that these iterations are stochastic estimates
of those in (17), based on instantaneous (instead of average) rates
and powers. Notice that here, n stands for both iteration and slot
indices; in other words, each iteration of (20) will be run per slot.

As with (16), we can re-write (20) into a compact form:

Λ̂[n+ 1] =
[
Λ̂[n]− βĝ

(
α∗(Λ̂[n];γ[n])

)]+
(21)

where ĝ
(
α∗(Λ̂[n]);γ[n]

)
is a stochastic gradient depending on

current fading realization γ[n]. Provided that the random fading
process is ergodic, it can be shown that Eγ[n] [ĝ (α∗(Λ;γ[n]))] =

g(α∗(Λ)); i.e., stochastic gradient ĝ is a random realization of the
“ensemble” gradient g.

The convergence of stochastic (sub-)gradient iteration (21) to the
optimal Λ∗ in probability can be established as the stepsize β → 0,
along the similar lines in [3, 12]. Due to the zero-duality gap result

4776



in Proposition 1, the companion chunk allocation scheme α∗(Λ̂;γ)

also converges (in probability) to the globally optimal one for (9).
An online scheduling algorithm can be then implemented at AP

as follows: s1) Starting from arbitrary Λ̂[0] ≥ 0, determine the on-
line chunk allocation α∗(Λ̂[n];γ[n]) per slot n using greedy strat-
egy (15); s2) Update Λ̂[n + 1] from Λ̂[n] using (21); then imple-
ment s1) and s2) again for the next slot n+ 1. In this algorithm, the
AP only needs to calculate the net-rewards φ

(q)
k,m,l(Λ̂[n];γ[n]) for

all the K users, L modes, 2 queues per chunk m, and then adopts
the “winner-takes-all” strategy in Lemma 1 to determine the optimal
chunk assignment policy taken per slot n. It requires a linear com-
putational complexity of O(2KML) to calculate the net-rewards
φ

(q)
k,m,l(Λ̂[n];γ[n]), whereas determining the triplet {k∗

m, l∗m, q∗m}
per chunk m for the greedy strategy (15) needs a computational com-
plexity of O(M · log(2KL)). Hence, all required operations per slot
have a linear computational complexity of O(2KML) in the num-
ber of users, chunks, modes and packet queues. Moreover, such a
low complexity algorithm is capable of learning the channel distri-
bution to approach the optimal scheduling and resource allocation
without a priori knowledge of channel cdf.

4. NUMERICAL RESULTS

Consider a K = 4 user OFDMA downlink with bandwidth B = 512

KHz and the channel coherence time T = 1 ms. The subcarriers are
grouped into M = 8 chunks, each consisting of J = 16 subcarriers.
Each data stream has two types of packets with BER requirements
ϵ̌(0) = 10−6 for HQ and ϵ̌(1) = 10−2 for LQ packets. A ratio η = 1

needs to be maintained between the numbers of HQ and LQ packets.
The frequency separation between two adjacent subcarriers △f = 4

KHz, and channel coherence bandwidth fc = 80 KHz. The Lb-
ary quadrature amplitude modulation (QAM) is employed for AMC,
where Lb can take values from {0, 22, · · · , 212}. For mode l = 0,
Lb = 0, i.e., no transmission; whereas Lb = 22l and AMC rate
ρl = 2l, for l = 1, . . . , 6.

To gauge the performance of the proposed scheme, we compare
it with three heuristic schemes: i) a fixed-user-chunk scheme (de-
noted by heu1), where each of the four users is exclusively assigned
M/4 = 2 chunks and power budget P̌ /4, and optimal chunk-based
allocation is performed per user; ii) a fixed-queue-chunk scheme (de-
noted by heu2), where each of the eight user queues is exclusively
assigned M/8 = 1 chunk and power budget P̌ /8, and rate control
is performed to meet the BER requirement per queue; iii) a fixed-
power scheme (denoted by heu3), where each of the total 8 queues
of the 4 users is exclusively assigned M/8 = 1 chunk, and transmit-
power is fixed at P̌ /8 per chunk per slot. Fig. 1 shows the resulting
average sum-rates (i.e., wk = 1, ∀k) for the optimal and heuristic
schemes under different sum-power budget, where each result was
obtained as the average of 20 independent runs, and in each run the
system was simulated for a time period equivalent to 9,000 ms. It is
clearly seen the proposed optimal scheme significantly outperforms
the heuristic schemes for all P̌ values since it is capable of fully
exploiting all the available spectral, temporal, and multi-user diver-
sity on channel fading. The heu1 scheme ignores multi-user diver-
sity, leading to performance loss. The heu2 scheme not only ignores
multiuser diversity, but the spectral diversity; thus more performance
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Fig. 2. Evolution of Lagrange multipliers for optimal scheme.

loss is incurred. The heu3 scheme causes an extra significant perfor-
mance loss due to the ignoring of all available diversity and under-
utilization of the power budget. Overall, Fig. 1 clearly demonstrates
that the proposed optimal scheme can result in large throughput gain
over heuristic schemes, and this gain becomes more pronounced as
the power budget P̌ increases.

The channel cdf was assumed unknown a priori in simulations,
and the proposed stochastic scheme is capable of learning this knowl-
edge on-the-fly and approaching the optimal strategy. Fig. 2 de-
picts the evolution of Lagrange multipliers λ̂ and µ̂1 for the opti-
mal scheme when the power budget P̌ = 40 Watts and stepsize
β = 0.001. It is clearly observed that the Lagrange multipliers
quickly converge to the neighborhood of the optimal values.

5. CONCLUSIONS

We solved the optimal chunk-based allocation for OFDMA down-
link, where AMC modes are employed for transmission and data
streams contain packets with diverse BER requirements. It was shown
that the optimal scheme can be obtained through dual-gradient iter-
ations. Stochastic optimization method was then adopted to develop
an on-line algorithm capable of dynamically learning the channel
statistics and converging to the optimal benchmark.
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