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ABSTRACT
We consider the problem of power allocation for the multiple-input
single-output (MISO) downlink with uncertain channel state infor-
mation at the transmitter. The uncertainty is modeled probabilisti-
cally and the receivers specify quality-of-service (QoS) constraints
in terms of a target signal-to-interference-and-noise ratio that is to
be achieved with a given outage probability. The proposed approach
is based on a deterministic characterization of the outage probabil-
ity, and mildly conservative approximations thereof. Although the
resulting optimization problems are not convex, the good solutions
that we obtain using straightforward coordinate update algorithms
provide significantly better performance than the existing convex ap-
proaches because the approximations are less conservative.

Index Terms— quality-of-service, uncertainty, robustness

1. INTRODUCTION

It has long been recognized that the provision of multiple antennas at
the transmitter of a downlink system has the potential to significantly
improve the efficiency with which messages can be communicated;
e.g., [1,2]. In the case of fixed-rate traffic, one way in which that po-
tential can be realized is to design a linear transmitter so as to mini-
mize the power that is required to enable reliable communication to
each receiver at their specified target rate; e.g., [3, 4]. with accurate
channel state information (CSI), optimal linear precoders for a vari-
ety of such quality-of-service (QoS) problems have been obtained;
e.g., [4–8]. In practice, however, the CSI that can be made available
at the transmitter is imperfect, due to estimation errors, quantization,
feedback delay, feedback errors, and other effects; e.g., [9]. A pru-
dent approach for dealing with the resulting uncertainty in the CSI
is to incorporate a model for the uncertainty into the transmitter de-
sign. One approach to doing so is to presume a bounded model for
the uncertainty and to design a transmitter that satisfies the QoS re-
quirements even for the worst case of the uncertainties admitted by
the model; e.g., [10–13]. In this paper we will consider an alternate
approach in which the uncertainty is modeled probabilistically, and
the QoS requirements are to be satisfied up to a given probability
of outage. Several techniques for finding good linear precoders for
such problems have been developed [14–16]. In addition, “power
loading” techniques have been developed for cases in which the di-
rections of transmission have already been chosen [17, 18].

The principle that underlies the previous approaches to outage-
based QoS problems for the downlink [15–18] is to seek a deter-
ministic approximation of the outage constraint that is conserva-
tive and can be represented in a form that is convex in design vari-
ables. Conservatism means that any feasible point in the resulting
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restricted optimization problem will satisfy the original outage con-
straint, and convexity means that a globally optimal solution to the
restricted optimization problem can be efficiently found. The princi-
ples that underlie the proposed approaches are somewhat different.
In Section 3, under the presumption of a Gaussian model for chan-
nel uncertainties, we develop a power loading technique for arbitrary
beamforming directions that does not involve an approximation of
the outage constraint, but employs the precise deterministic repre-
sentation in [19]. Unlike the previous approaches, the resulting op-
timization problem is not convex, but we develop a straightforward
cyclic coordinate descent algorithm that typically produces good so-
lutions. Indeed, in a number of scenarios our suboptimal solutions
to the precise formulation of the problem provide superior perfor-
mance to that of the globally optimal solutions to the conservative
approximation. In Section 4 we use insight from that development
to construct a more computationally efficient power-loading tech-
nique for the case of nominally “zero-forcing” beamforming direc-
tions. While that technique does involve a conservative approxima-
tion, the structure of the approximation is quite different from those
that have been previously applied, and numerical experience sug-
gests that it can be significantly less conservative. Interestingly, in
some important scenarios the lower level of conservatism in the ap-
proximation means that the proposed power loading algorithm with
nominally zero-forcing directions yields better performance than ex-
isting techniques in which the power loading and directions are de-
signed jointly.

2. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a narrowband single-cell downlink scenario in which
a base station with Nt antennas sends independent messages to K
users, each of which is equipped with a single antenna. The based
station employs linear precoding and the transmitted signal is

x =

K
X

k=1

wksk = Ws, (1)

where wk ∈ C
Nt is the beamforming vector for the kth user and

forms the kth column of the precoding matrix W, and sk is the
symbol to be sent to the kth user, normalized so that E{ssH} = I.
We store the vector of complex channel gains from the transmitting
antennas to the kth receiver in the row vector hH

k . The transmitter
has an estimate ĥH

k of hH
k , and we will model the uncertainty in this

estimate additively, as

h
H
k = ĥ

H
k + e

H
k , k = 1, . . . , K. (2)

The error ek is the result of a number of different effects, and we
will model it as a circular complex Gaussian random variable with
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zero mean and covariance matrix Ck; i.e., ek∼CN(0, Ck). The re-
ceived signal at user k is yk = hH

k Ws+ zk, where zk∼CN(0, σ2
k)

denotes the additive Gaussian noise at that receiver. This signal can
be rewritten as

yk = ĥ
H
k wksk +

`

ĥ
H
k W̄k + e

H
k W

´

s + zk, (3)

where W̄k = [w1, ..., wk−1,0,wk+1, ..., wK ]. The problem of
interest in this paper is to minimize the transmission power required
to provide each user with a specified quality of service. We specify
the QoS in terms of an outage probability for the following measure
of the SINR at user k,

SINRk =
|ĥH

k wk|
2

(ĥH
k W̄k + eH

k W)(W̄H
k ĥk + WHek) + σ2

k

. (4)

2.1. Chance-constrained robust precoding

For given SINR targets γk, our QoS constraint is that the probability
that SINRk ≥ γk should be greater than 1 − ǫk, for a pre-specified
parameter ǫk. Therefore, the problem of interest can be written as

min
{wk∈CNt}K

k=1

Tr
`

WW
H

´

(5a)

subject to Prek

`

SINRk ≥ γk

´

≥ 1 − ǫk, ∀k. (5b)

The presence of the chance constraints in (5b) makes the problem
difficult to tackle directly, especially because the SINR in (4) is
the ratio of a quadratic functions of the design variables. One ap-
proach is to apply a conservative transformation to the SINR con-
straint in (5b) to convert the problem in (5) into a chance chance-
constrained second-order cone program (SOCP) [15]. By applying
various conservative approximations of chance-constrained SOCPs,
efficiently-solvable deterministic convex optimization problems are
obtained. The conservative nature of the approximations means that
when these convex problems are feasible, the solution is guaran-
teed to satisfy the chance constraints in (5b). A related approach
in [16] first applies a semidefinite relaxation to the problem in (5),
which yields a semidefinite program (SDP) with chance constraints
on quadratic functions of a vector of variables. These chance con-
straints are then conservatively approximated by deterministic con-
vex constraints leading to an SDP formulation. The solutions to
such problems are guaranteed to satisfy the chance constraints in
(5b) whenever the semidefinite relaxation is tight.

2.2. Chance-constrained robust power loading

In robust precoding the directions of transmission, w̆k = wk/||wk||2,
and the power allocated to each direction, p̆k = ||wk||

2
2, are found

jointly. A potentially simpler approach is to choose the direc-
tions w̆k based on the transmitters’ channel estimates ĥk and then
to seek solutions to the problem in (5) over the K powers, p̆k.
If we allow the specification of the directions using vectors bk

that are not necessarily normalized, then for powers pk such that
wk = pkbk , the total power transmitted is

PK
k=1 pk||bk||

2
2. If we

define B = [b1,b2, ..., bK ] and P = Diag(p1, p2, ..., pK), the
robust power loading problem is

min
{pk≥0}

Tr
`

BPB
H´

(6a)

s.t. Prek

“ |ĥH
k bk|

2pk

(ĥH
k B̄k + eH

k B)P(B̄H
k ĥk + BHek) + σ2

k

≥ γk

”

≥ 1 − ǫk, (6b)

where B̄k = [b1, ..., bk−1,0,bk+1, ..., bK ] and we have left the
fact that the constraint applies for all k = 1, 2, . . . , K implicit.
A common choice for the precoding matrix B is the regularized
channel inversion precoder for the estimated channel [20]: Given
Ĥ = [ĥ1, ĥ2, ..., ĥK ]H and a non-negative real number α,

BRCI = Ĥ
H

`

ĤĤ
H + αIK

´−1
. (7)

In the development of approaches to solve the problem in (6),
it can be helpful to write down the chance constraints in (6b) in the
form of chance constraints on quadratic function of a standard com-
plex Gaussian random variable, δk ∼ CN(0, I), namely,

Prδk

`

δ
H
k Qkδk + 2Re(δH

k rk) + vk ≥ 0
´

≥ 1 − ǫk, (8)

where Qk = −Ck
1/2BPBHCk

1/2, rk = −Ck
1/2BPB̄H

k ĥk and
vk = −ĥH

k B̄kPB̄H
k ĥk + 1

γk

|ĥH
k bk|

2pk − σ2
k. By writing chance

constraints in this form, the conservative approximations that are
summarized in [16] can be applied in a straightforward way. For
example, given B, the solution to the following SDP yields powers
{pk} that satisfy the constraints in (6),

min
{pk≥0}, {tk≥0}

Tr
`

BPB
H´

(9a)

subject to
»

Qk + tkI rk

rH
k vk − tkdk

2

–

� 0, (9b)

where dk =
q

φ−1
X2

2Nt

(1 − ǫk)/2, where φ−1
X2

2Nt

(·) is the in-

verse cumulative distribution function of central Chi-square random
variable with 2Nt degrees of freedom. In the special case of the
“zero-forcing” directions,

B = BZF = Ĥ
H`

ĤĤ
H´−1

, (10)

the SDP in (9) simplifies to [17]

min
{pk≥0}

Tr
`

BZFPBZF
H

´

(11a)

s.t. C1/2
k BZFPB

H
ZFC

1/2
k +

“

−
pk

γkdk
2 +

σ2
k

dk
2

”

I � 0. (11b)

3. A NON-CONSERVATIVE APPROACH TO
CHANCE-CONSTRAINED ROBUST POWER LOADING

In this section we develop a cyclic coordinate descent algorithm for
finding good solutions to (6). Unlike previous approaches, such as
those that led to (9) and (11), we do not seek a conservative deter-
ministic approximation of the chance constraint in (8) that results in
a tractable convex, but conservative, formulation. Instead, we em-
ploy the following closed-form expression for the probability on the
left hand side of (8) that was derived in [19].

Lemma 1 ( [19]). Given a deterministic positive-definite Hermitian
symmetric matrix Q and a deterministic vector a, for the standard
circular complex Gaussian random vector x ∼ CN(0, I), the CDF
of ||x − a||2Q = (x − a)HQ(x − a), Pr

`

||x − a||2Q ≤ τ
´

, is

1

2π

Z ∞

−∞

eτ(iω+β)

iω + β

e−c

det(I + (iω + β)Q)
dω, (12)

for some β > 0 such that I + βQ is positive definite, where c =
aH(I + 1

iω+β
Q−1)−1a.
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If we let Q = VΛVH denote the eigen-decomposition of Q,
with λm denoting the eigenvalues arranged in descending order, and
define ã = VHa, then the constant c in Lemma 1 can be written as
c = −

PM
m=1

|ã(m)|2(iω+β)λm

1+(iω+β)λm
. In order to employ Lemma 1 in our

context, we rewrite (8) as Pr
`

||δk − ak||
2
(−Qk) ≤ τk

´

≥ 1 − ǫk,

where ak = −Q−1
k rk and τk = vk −aH

k Qkak = 1
γk

|ĥH
k bk|

2pk −

σ2
k, and we recall that Qk is negative-definite.

The proposed algorithm starts with a diagonal power allocation
matrix P(0) for which all the SINR constraints in (6b) are satisfied.
(We will discuss techniques for finding such a P(0) below.) The
algorithm then seeks a power allocation of lower cost that remains
feasible via cyclic coordinate descent; e.g., [21, Section 2-7]. We
will describe the steps in each cycle in the natural order, but the
principles apply to any ordering of {pk}.

At the kth step of the ith cycle of the coordinate descent al-
gorithm we seek to reduce the value of pk given pj = p

(i)
j for

j = 1, . . . , k − 1 and pj = p
(i−1)
j for j = k + 1, . . . , K. Since

a reduction in the value of pk cannot decrease SINRj for j 6= k,
when performing the descent step on pk we need only consider the
constraint on SINRk. To perform the descent step on pk at the ith

cycle we employ a bisection search on the interval [0, p
(i−1)
k ] for a

value of pk that provides a significant decrease in the objective and
remains feasible. For each postulated value for pk, the probability
that SINRk ≥ γk is evaluated using the expression in Lemma 1, and
we terminate the bisection search in the ith cycle once that prob-
ability lies in [1 − ǫk, 1 − ǫk + ∆

(i)
k ], where ∆

(i)
k is a parameter

of the algorithm. The cycles of the algorithm are terminated once
we have found a power allocation {p

(i)
k }k such that for all k the

probability that SINRk ≥ γk lies in [1 − ǫk, 1 − ǫk + ∆
(i)
k ]. A

feature of this algorithm is that at each step in each cycle the allo-
cation {p

(i)
1 , p

(i)
2 , . . . , p

(i)
k , p

(i−1)
k+1 , . . . , p

(i−1)
K } is feasible and hence

whenever the algorithm is terminated, the current power allocation
will satisfy the specified QoS constraints. Furthermore, at each step
in each cycle, the objective value decreases, or remains the same.

To complete the description of the algorithm, we need to estab-
lish a method to determine a feasible starting point. As the feasible
set in (6) is not necessarily convex, determining whether or not an
instance of the problem in (6) is feasible can be computationally de-
manding task. Instead, we simply seek an approach that often finds
feasible points for reasonable instances of the problem. The pro-
posed approach involves selecting an initial diagonal power alloca-
tion matrix and evaluating each of the SINR constraints in (6b) using
Lemma 1. If that power allocation is not feasible, the allocation is
iteratively doubled until a feasible allocation is found or the power
become unreasonably large. In the latter case a new initial power
allocation can be selected or the algorithm reports that no feasible
point was found. In our implementation we have found that choos-
ing the initial power allocation to be the power allocation that would
be chosen if the channel estimates ĥH

k were exact and if each SINRk

were set to be equal to its lower bound typically leads to a feasible
starting point for the main algorithm after a small number of dou-
bling iterations. By rearranging the terms in the SINR expression,
one can obtain the squares of this initial power allocation by solving
a set of linear equations.

As the problem in (6) is not convex, the proposed algorithm is
not guaranteed to find the globally optimal solution. Indeed, it is not
even guaranteed to find a feasible point when one exists. However,
we will demonstrate in Section 5 that by tackling the problem di-
rectly, without a conservative approximation, the proposed approach
often provides better performance than the existing conservative ap-

proaches. Having said that, the repeated requirement to compute an
integral of the form in (12) imposes a significant computational bur-
den. (The SDPs that must be solved in the existing approaches also
impose a significant computational burden.) To address this issue,
in the following sections we will develop customized variants of the
algorithm for the case of the zero-forcing directions BZF.

4. EFFICIENT CONSERVATIVE ALGORITHMS FOR THE
ZERO-FORCING CASE

In this section we focus on the case of the zero-forcing beamforming
direction, B = BZF. In this case, B̄H

k ĥk = 0 and |ĥH
k bk|

2 = 1.
These simplifications mean that we have rk = 0, vk = pk/γk −σ2

k,
τk = pk/γk − σ2

k, and ak = 0, and hence for each k, the term c in
(12) is zero. As we will outline below, these simplifications enable
the application of residue theory to show how integral in (12) can
be computed as a summation of Nt + 1 terms. (Residue theory was
employed in a related context in [22].) By subsequently applying
a conservative approximation to that summation we obtain efficient
power loading algorithm. To simplify the development, we will first
consider the case of equal power loading, P = pI, in a scenario
that is homogenous in the sense that all users have the same noise
variance, σ, the same QoS requirement, γ, the same error covariance,
C, and the same outage probability, ǫ. The insight extracted from
that case is then extended to the case of full power loading.

4.1. Equal power loading for the homogenous scenario

For a homogeneous scenario with equal power loading, P = pI,
we have Qk = pQ̃, where Q̃ = −C1/2BZFB

H
ZFC

1/2. We will
denote the eigenvalues of Q̃, arranged in descending order, by λ̃m

and will assume that they are distinct. In this case, the probability
to be evaluated is Pr

`

||δ||2
(−Q̃)

≤ 1/γ − σ2/p
´

. If we convert the
integral in (12) to an appropriate contour integral, then we can apply
residue theory to that contour integral and show that Pr

`

||δ||2
(−Q̃)

≤

1/γ − σ2/p
´

= 1 +
PNt

ℓ=1 fℓ(p), where

fℓ(p) = − exp
“

−
1

γλ̃ℓ

+
σ2

pλ̃ℓ

” 1
Q

j 6=ℓ(1 − λ̃j/λ̃ℓ)
. (13)

Using (13), the design problem becomes minp≥0 p subject to 1 +
PNt

ℓ=1 fℓ(p) ≥ 1 − ǫ. The optimal solution is simply the smallest
non-negative root of

PNt

ℓ=1 fℓ(p) + ǫ = 0. Since fℓ(p) is smooth,
a number of root finding algorithms could be considered. Instead of
doing that, we will employ a conservative approximation of the con-
straint 1+

PNt

ℓ=1 fℓ(p) ≥ 1− ǫ and show that the resulting problem
has a closed-form solution. To develop the conservative approxi-
mation we note that since −Q̃ is positive-definite, it only makes
sense to consider cases where 1/γ − σ2/p ≥ 0 . In those cases, as
ℓ increases the argument of the exponential in (13) becomes more
negative, and hence the magnitude of fℓ(p) decreases. Furthermore,
for odd ℓ, fℓ(p) < 0, whereas for even ℓ, fℓ(p) > 0. As a result
we have that

PNt

ℓ=2 fℓ(p) ≥ 0 and that this term will typically be
small in comparison to |f1(p)|. Therefore, if p is chosen such that
1 + f1(p) ≥ 1− ǫ, then the outage constraint is guaranteed to hold.
More explicitly, if p is chosen such that

p ≥
σ2

1/γ + λ̃1 ln
`

ǫ
Q

k 6=1(1 − λ̃k/λ̃1)
´ =

σ2

ν
, (14)

then the SINR constraints in (6b) are guaranteed to be satisfied.
Since the objective is to minimize transmitted power, if ν > 0 we
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choose p = σ2/ν. If ν ≤ 0 there is no p that satisfies the conserva-
tive approximation of the constraints.

4.2. General power loading

We now use insight from the above analysis to develop a method for
scenarios that are heterogenous in the sense that C, γ, σ2 and ǫ can
differ for each user. In this setting, by applying residue theory to
the integral expression (cf. (12)) of the chance constraint we obtain
Pr(||δk||

2
−Qk

≤ pk/γk − σ2
k) = 1 +

PNt

ℓ=1 fℓk(P), where

fℓk(P) = − exp
“

(
1

γk
pk − σ2

k)
−1

λℓk

” 1
Q

j 6=ℓ(1 − λjk/λℓk)
(15)

and λmk is the mth largest eigenvalue of Qk. Unlike the homoge-
nous case, fℓk(P) is a function of all the powers, through the eigen-
values of Qk . This complicates the development of a cyclic co-
ordinate update algorithm. To address that difficulty, at the kth

step of the ith cycle we will construct an approximation of Qk as
Q̂

(i)
k = −Ck

1/2BZFP
(i−1)BH

ZFCk
1/2. The resulting approxima-

tion of fℓk(P) depends only on p
(i)
k , which simplifies the coordinate

update step. That step can be further simplified using a conservative
approximation of form that led to (14) to obtain

p
(i)
k ≥ γkσ2

k − γkλ̂
(i)
1k ln

“

ǫk

Y

j 6=1

(1 − λ̂
(i)
jk /λ̂

(i)
1k )

”

(16)

where λ̂
(i)
mk is the mth largest eigenvalue of Q̂

(i)
k . Since we seek

small powers, p
(i)
k is chosen such that equality holds in (16). To ini-

tialize the algorithm, we chose p
(0)
k as if the system were homoge-

nous with the kth user’s parameters, cf. (14). That is, we choose

p
(0)
k =

σ2
k

1/γk + λ̃1k ln
`

ǫk

Q

j 6=1(1 − λ̃jk/λ̃1k)
´ , (17)

where λ̃mk is the mth largest eigenvalue of the corresponding Q̃k.
Unlike the algorithm in Section 3, this initial power allocation is not
necessarily feasible, but as the coordinates are updated the power al-
location tends to move toward the feasible set. The cyclic updates
are terminated once a feasible point is found or if no feasible point
is found in a reasonable time. (Feasibility is evaluated using the ex-
pression that precedes in (15).) Our numerical experience suggests
that the starting point in (17) is particularly effective in that the level
of conservatism in the first feasible point tends to be low. In struc-
tures where that is not the case, one can use this feasible point to
initialize an algorithm analogous to that in Section 3.

5. SIMULATION

We now compare the proposed power loading algorithms with the
power loading algorithm for zero-forcing directions in [17] (cf. (11))
and the algorithm in (9) for the case of RCI directions (which is
based on [16]). We will also compare with the robust precoding
method in [16]. We consider an environment with Nt = 3 transmit
antennas, K = 3 users, and i.i.d. Rayleigh fading channels. The
uncertainty in the channel estimation is modeled by Gaussian ran-
dom variables with zero mean and covariance Ck = 0.002I. The
probability of outage is set to be ǫk = 0.05 for all users. We fix the
QoS requirement for users 1 and 2 to be 3 dB. We generated 10,000
realizations of the set of channel estimates {ĥH

k }K
k=1 and examined
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Fig. 1. Percentage of channel realizations for which the probabilistic
SINR guarantee can be made, against γ3.
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Fig. 2. Average transmitted power against γ3.

the performance of each method as the target SINR of user 3, γ3, in-
creases from 0 to 6 dB. For each set of channel estimates and for each
value of γ3 we determine whether each design formulation generates
a beamformer that guarantees that the probabilistic SINR constraints
are satisfied. In Fig. 1, we plot the percentage of channel realizations
for which each design generated a feasible beamformer. Then, we
subsequently selected all the realization from the set of 10,000 for
which all methods provide a feasible solution for γ3 = 6 dB. In
Fig. 2, we plot the average transmission power over the 8,938 such
channels against γ3.

From Fig. 1 it can be seen that by tackling the power loading
problem directly (or closely), even with suboptimal algorithms, the
proposed power loading methods are able to satisfy the QoS con-
straints more often than the existing power loading methods which
are based on optimal solutions to tractable conservative approxima-
tions of the problem. This is because the approximations made in
those methods are quite conservative. What is perhaps more in-
teresting is that for higher SINR targets, the proposed power load-
ing methods provide better performance than the robust precoding
method in [16], despite the fact that that method has many more de-
grees of design freedom. Once again, this is due to the fact that the
approximation used in the proposed method for zero-forcing direc-
tions is much less conservative. In our implementations, the method
proposed in Section 3 incurred similar computational costs to the
existing SDP-based methods, whereas the method proposed in Sec-
tion 4.2 is significantly cheaper.
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[18] N. Vučić and H. Boche, “A tractable method for chance-
constrained power control in downlink multiuser MISO sys-
tems with channel uncertainty,” IEEE Sig. Proc. Lett., vol. 16,
no. 5, pp. 346–349, 2009.

[19] T. Y. Al-Naffouri and B. Hassibi, “On the distribution of indef-
inite quadratic forms in Gaussian random variables,” in Proc.
Int. Symp. Info. Theory, Seoul, Jun. 2009, pp. 1744–1748.

[20] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A
vector-perturbation technique for near-capacity multiantenna
multiuser communication–Part I: Channel inversion and regu-
larization,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195–202,
Jan. 2005.

[21] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont,
MA: Athena Scientific, 1999.

[22] J. Park, Y. Sung, D. Kim, and H. V. Poor, “Outage probabil-
ity and outage-based robust beamforming for MIMO interfer-
ence channels with imperfect channel state information,” IEEE
Trans. Wireless Commun., vol. 11, no. 10, pp. 3561–3573, Oct.
2012.

4773


