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ABSTRACT

This paper considers a discrete sum rate maximization (DSRM)
problem for transmit optimization in multiuser MISO downlink. Un-
like many existing sum rate maximization designs, DSRM focuses
on a scenario where each user’s achievable rate can only be cho-
sen from a given discrete rate set. This discrete rate-based design is
motivated by the fact that practical communication systems can sup-
port only a finite number of combinations of modulation and coding
schemes. We tackle the DSRM problem first by deriving a novel
reformulation of DSRM, in which the discrete rate variables are ab-
sorbed by the objective function. Then, from this reformulation, an
approximation algorithm based on convex optimization and iterative
solution refinement is developed. Simulations results are provided
to demonstrate the performance of the proposed algorithm compared
with some state-of-the-art algorithms.

Index Terms— discrete sum rate maximization, transmit opti-
mization, transmit beamforming

1. INTRODUCTION

In multiuser MIMO downlink with channel state information at the
transmitter, sum rate maximization-based transmit optimization has
been a very active research topic. While dirty paper coding (DPC)
[1] has been proven to achieve the sum capacity under this scenario,
the high complexity of DPC prohibits its practical implementation.
As a compromise, a more popularly adopted alternative is to treat
the inter-user interference as noise and optimize the achievable sum
rate. Even so, the resulting sum rate maximization problem is still
difficult, and in general NP-hard [2]. In light of this, suboptimal
but pragmatic transmit designs have been extensively studied [3–7],
and they can yield satisfactory rate performance as simulations have
shown. However, the vast majority of the present studies have relied
on an implicit assumption— that each user’s achievable rate can be
adapted to any non-negative real number. While it is theoretically
possible to achieve a continuous-valued data rate, such scheme is
often not realizable in practical communication systems, as the latter
can afford to employ only a finite number of modulation and coding
schemes (MCSs). For example, in the 3GPP LTE standard [8], there
are at most 16 combinations of MCSs with the allowable data rate
ranging from 0.15 bits to 5.55 bits per channel use. Simply ignoring
this finite discrete rate limitation may lead to significant performance
degradation in practical systems.

In this paper, we take the discrete rate constraints explicitly into
our transmit design, and consider a discrete sum rate maximization
(DSRM) problem for multiuser MISO downlink. While the sum rate
maximization problem is already hard to solve, this is even more
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so with DSRM owing to the incorporation of combinatorial con-
straints. To the best of our knowledge, the idea of DSRM formula-
tion for accommodating the practical finite rate constraints was first
proposed in [9] for multiuser MISO downlink. There, the authors
use a mixed-integer second order cone program (MI-SOCP) formu-
lation, and then employ a branch-and-bound method to handle the
problem. However, as solving the MI-SOCP entails a worst-case ex-
ponential complexity, the authors propose another method where a
realizable low-complexity heuristic was suggested.

This paper also aims at developing a pragmatic approach for the
DSRM problem. First, we derive a novel equivalent formulation of
DSRM. The advantage of the new formulation is that it involves only
continuous variables, and the discrete rate variables are absorbed
into the formulation itself. Then, based on the new formulation,
we derive a convex approximation to DSRM and an iterative pro-
cedure to refine the approximate solution. Numerical results demon-
strate that the proposed algorithm outperforms the state-of-the-art
algorithms in terms of both the sum rate and the transmit power.

Before delving into the details of our method, we should briefly
discuss related or prior work. Sum rate maximization has attracted
much interest not only in the MISO or MIMO multiuser downlink
scenario, but also in related scenarios such as dynamic spectrum
management [2] and power control in wireless networks [10]. As
such, one can find numerous solution methods in the literature; e.g.,
see [2–7, 10] and the references therein. For the scenario consid-
ered here, we should mention zero-forcing beamforming with user
selection [3], block diagonalization [7], uplink-downlink duality [4]
and weighted MMSE (WMMSE) minimization [5,6], to name a few.
However, as mentioned previously, we see much fewer work that in-
corporates finite discrete rate constraints. In dynamic spectrum man-
agement, DSRM was considered in [11,12]. The work closest to ours
is that by Cheng et. al [9], which has been reviewed above. The two
studies are nevertheless different— Cheng et. al choose to handle the
discrete rate variables explicitly, while we intentionally circumvent
them through a reformulation, as our endeavor to provide a practi-
cally efficient transmit design. Moreover, we should note that our
method may be regarded as a conceptual generalization of our pre-
vious work on joint admission control and beamforming [13].

2. PROBLEM STATEMENT

We consider a standard unicast multiuser MISO downlink scenario
(see, e.g., [3]), where a multi-antenna base station (BS) simultane-
ously transmits K independent messages to K single-antenna users,
each message for one user. Under this setting, the signal received by
user k at time t may be described as

yk(t) = hHk xk(t) +
∑
m 6=k

hHk xm(t) + nk(t),
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where (·)H denotes the Hermitian transpose, hk ∈ CN is the
channel response from the BS to the kth user; N is the number
of antennas employed by the BS; nk(t) ∼ CN (0, σ2

k) is addi-
tive complex Gaussian noise with mean zero and variance σ2

k; and
xk(t) ∈ CN is the transmit signal intended for user k. Denote
Wk = E{xk(t)xk(t)H} as the covariance matrix of the transmit
signal xk(t), and assume that the inter-user interference is treated
as independently distributed Gaussian noise at the user. Then, the
information rate for user k may be formulated as [14]

Rk = log2

(
1 +

hHk Wkhk
σ2
k +

∑
l 6=k h

H
k Wlhk

)
, k = 1, . . . ,K,

which is achievable when every input signal xk(t) follows a com-
plex Gaussian distribution, i.e., xk(t) ∼ CN (0,Wk). Notice that
for the case where Wk = wkw

H
k for some wk ∈ CN , or equiv-

alently, rank(Wk) ≤ 1, the physical transmit strategy reduces to
transmit beamforming; viz., xk(t) = wksk(t) where wk is the
beamforming vector and sk(t) is a data stream that carries infor-
mation for user k. In this study, we consider a general transmit co-
variance structure, in which we do not put rank constraints on Wk,
or assume transmit beamforming. It is however interesting to note
that in our ensuing development, we will show that our problem au-
tomatically leads to rank-one solutions with Wk.

Our problem is to maximize the weighted sum rate of all the
users, given that their achievable rates Rk are chosen from a pre-
determined discrete rate set. Mathematically, this discrete sum rate
maximization (DSRM) problem may be formulated as [9]

max
{Wk,Rk}Kk=1

K∑
k=1

λkRk (1a)

s.t.

K∑
k=1

Tr(Wk) ≤ P,Wk � 0, ∀k ∈ K, (1b)

Rk ≤ log2

(
1 +

hHk Wkhk
σ2
k +

∑
l 6=k h

H
k Wlhk

)
, (1c)

Rk ∈ {R0, R1, . . . , RM}, ∀k ∈ K, (1d)

where K , {1, . . . ,K}, λk > 0 is the priority weight for
user k, P > 0 is the transmit power budget at the BS and
{R0, R1, . . . , RM} denotes the discrete rate set in which we as-
sume 0 = R0 < R1 < · · · < RM . The discrete rate set depends on
modulation and coding schemes offered by the system, see [9] for
more descriptions. As can be seen above, the DSRM formulation
constraints the achievable rates Rk to lie in the discrete rate set
{R0, R1, . . . , RM}.

The DSRM problem is difficult to solve as it involves a joint op-
timization of discrete and continuous variables. In [9], the authors
handle essentially the same problem using a mixed-integer formula-
tion. In the next section, we will describe our method which uses a
different formulation and solution approach.

3. DSRM BY CONVEX APPROXIMATION

Our endeavor to attack DSRM is based on a convex approxima-
tion approach, which consists of an equivalent reformulation of the
DSRM problem (1), a convex approximation formulation of the re-
formulated DSRM problem, and an iterative solution refinement pro-
cedure. They are presented in the following subsections.

3.1. Reformulation of the DSRM Problem (1)

Observe that in problem (1), the constraints (1c) specify whether the
chosen data rates Rk are supportable for a given set of transmit co-
variances. The key of our reformulation is to appropriately formulate
this supportability without explicitly choosing the discrete variables
Rk. To this end, let us denote the following function

rk({Wl}Kl=1, R
i) , Ri

(
1+

1

σ2
k

hHk

(∑
l 6=k

Wl−
1

2Ri− 1
Wk

)
hk

)
,

for k = 1, . . . ,K. It can be shown that rk({Wl}Kl=1, R
i) is strictly

increasing with respect to (w.r.t.) Ri. Moreover, the following equiv-
alence holds

(1c) holds ⇐⇒ rk({Wl}Kl=1, Rk) ≤ 0.

By the above equivalence, we have the following claim:

Claim 1 The following problem is equivalent to the DSRM prob-
lem (1):

max
{Wk}Kk=1

K∑
k=1

λk

M∑
i=1

(Ri−1 −Ri) f ik({Wl}Kl=1) (2a)

s.t.

K∑
k=1

Tr(Wk) ≤ P, Wk � 0, ∀k ∈ K, (2b)

where

f ik({Wl}Kl=1) , card
(

max
{

0, rk({Wl}Kl=1, R
i)
})

, (3)

and card(x) = 0 if x = 0, and card(x) = 1, otherwise.

We should point out that the main advantage of the reformulation
(2) is that it involves only the continuous decision variables {Wk},
and the discrete rate selection is done automatically in the process of
solving problem (2).

Proof of Claim 1: As 0 = R0 < . . . < RM and rk({Wl}Kl=1, R
i)

is strictly increasing w.r.t. Ri, for every feasible solution {Wl}Kl=1

of problem (2), there exists an index 0 ≤ ik ≤ M such that
rk({Wl}Kl=1, R

i) ≤ 0 for i = 0, . . . , ik, and rk({Wl}Kl=1, R
i) > 0

for all other i’s. As a result, we have

f ik({Wl}Kl=1) =

{
0, if i ≤ ik,
1, otherwise.

By substituting f ik({Wl}Kl=1) into (2a), the objective function is
simplified to

K∑
k=1

λkR
ik −

K∑
k=1

λkR
M . (4)

The latter term
∑K
k=1 λkR

M can be ignored as it is a constant. From
(4), one can see that every feasible solution {Wl}Kl=1 of problem (2)
corresponds to a supportable weighted sum rate. Hence, an optimal
solution of (2) is the one that yields the maximal weighted sum rate,
which is exactly the goal of the DSRM problem (1). �

From this point on, we will focus on the equivalent DSRM for-
mulation in (2). Upon careful examination of problem (2), it can be
shown that the DSRM problem may have multiple optimal solutions,
where some are allowed to use higher transmit powers. As minimal
transmit power under the same sum rate performance is desired, we
consider a slightly modified version of problem (2) which is stated
below:

4760



Observation 1 Let 0 < ε < mink,i(λk(Ri−Ri−1)/P ). Consider
the following problem

max
{Wk}Kk=1

K∑
k=1

λk

M∑
i=1

(Ri−1 −Ri) f ik({Wl}Kl=1)− ε
K∑
k=1

Tr(Wk)

s.t.

K∑
k=1

Tr(Wk) ≤ P, Wk � 0, ∀k ∈ K. (5)

Then, any optimal solution of problem (5) is an optimal solution of
(2) with the minimum transmit power.

The proof of Observation 1 is given in Appendix 6.1.

3.2. Convex Approximation to the DSRM Problem (5)

The equivalent DSRM problem in (5) is difficult to solve. In partic-
ular, the difficulty comes from the (nonconvex) cardinality function
in (3). Our approach is to ignore the cardinality function, which
is reminiscent of the widely-adopted `1 approximation approach in
compressive sensing [15]. To be more specific, (3) is replaced by

f̃ ik({Wl}Kl=1) , max
{

0, rk({Wl}Kl=1, R
i)
}
. (6)

This leads to the following approximation to problem (5):

max
{Wk}Kk=1

K∑
k=1

λk

M∑
i=1

(Ri−1−Ri) f̃ ik({Wl}Kl=1)− ε̃
K∑
k=1

Tr(Wk)

s.t.

K∑
k=1

Tr(Wk) ≤ P,Wk � 0, ∀k ∈ K,
(7)

where ε̃ is a scaled penalty parameter to be described below. One
can verify that problem (7) is convex (recalling that Ri−1 − Ri <
0). Furthermore, by introducing slack variables µik to replace
f̃ ik({Wl}Kl=1) and changing the sign of the objective function, (7)
can be rewritten as the following semidefinite program (SDP):

min
{Wk,{µi

k
}}K

k=1

K∑
k=1

λk

M∑
i=1

(Ri −Ri−1) µik + ε̃

K∑
k=1

Tr(Wk)

s.t.

K∑
k=1

Tr(Wk) ≤ P,Wk � 0, ∀k ∈ K,

µik ≥ 0, µik ≥ rk({Wl}Kl=1, R
i), ∀ i, k,

(8)

which is efficiently solvable using off-the-shelf optimization soft-
wares, e.g., CVX [16].

It should be noted that problem (7) may not be a tight approx-
imation to problem (5). Hence, after solving (7), a further solution
refinement is necessary. We will elaborate on this in the next subsec-
tion. At this point, some important observations on problem (8) are
described as follows.

Observation 2 With ε̃ = Lε andL , RM [1+P maxk(hHk hk)/σ2
k],

problem (8) is a convex relaxation of the DSRM problem (5).

The proof of Observation 2 is omitted here due to space limitation.
Essentially, we observe that (5) can be modeled as a {0, 1}-mixed
integer program as the cardinality function f ik(·) takes value from
either 0 or 1. It follows that we can apply a continuous relaxation to
the {0, 1} constraint and obtain a convex-relaxed problem (see, e.g.,
[17]), which can further be shown to be equivalent to (8). It should
be noted that for the conventional continuous sum rate maximization
problem, no convex relaxation has been reported in the literature to
our best knowledge. Curiously, with DSRM, we are able to derive a
convex relaxation.

Proposition 1 For ε̃ > 0, any optimal solution {W ?
k }Kk=1 of prob-

lem (8) must satisfy rank(W ?
k ) ≤ 1 for all k ∈ K.

The proof is given in Appendix 6.2. This result implies that the op-
timal transmit strategy found by (8) must be transmit beamforming.

3.3. An Iterative Refinement for DSRM

In this subsection, we propose a DSRM solution generation proce-
dure for the convex approximation concept derived above. The key
insight behind is that if a given rate profile (RI1 , RI2 , . . . , RIK ) is
supportable, then with a sufficiently small ε̃, the optimal solution to
the following truncated problem of (8) (notice the change with the
inner summation)

min
{Wk,{µi

k
}}K

k=1

K∑
k=1

λk

Ik∑
i=1

(Ri −Ri−1) µik + ε̃

K∑
k=1

Tr(Wk)

s.t.
∑K
k=1 Tr(Wk) ≤ P,Wk � 0, ∀k ∈ K,

µik ≥ 0, µik ≥ rk({Wl}Kl=1, R
i), ∀ i, k

(9)

is precisely a set of transmit covariance matrices that supports the
same rate profile (RI1 , RI2 , . . . , RIK ). This observation suggests
us to refine the solution of (7) by gradually lowering the target rate
profile and solving (9) iteratively. The iterative refinement procedure
is summarized below. Note that the iterative refinement procedure
involves solving at most KM SDPs throughout the process.

• Initialize: A target rate profile: RI1 = . . . = RIK = RM .
1. (Transmit optimization) Solve problem (9) under the profile

(RI1 , RI2 , . . . , RIK ). If rk({Wl}Kl=1;RIk ) ≤ 0 for all k ∈
K, save {Wk} and terminate; otherwise go to Step 2.

2. (Iterative refinement) Select user k with the maximum
rk({Wl}Kl=1;RIk )/RIk and decrease its maximum support-
able rate by Ik = Ik − 1. Return to Step 1.

• Return: {Wk}, (RI1 , RI2 , . . . , RIK ) as a feasible DSRM
solution.

4. NUMERICAL EXAMPLES
In this section, we test the performance of the proposed DSRM al-
gorithm and compare it to some state-of-the-art algorithms, namely
Algorithm 1 in [9] and the WMMSE algorithm [5]. The former
is a low-complexity method for DSRM, and the latter is originally
designed for the conventional weighted sum rate maximization
problem with unconstrained rate profile. As a benchmark, we will
also present the result of WMMSE after quantizing the continuous
rates to the discrete rate set with floor quantization. The simulation
settings are as follows: The number of antennas at the base station is
N = 6; there are K = 8 users in the cell. Following [9], we choose
the discrete rate set to be that specified in 3GPP LTE standard [8],
i.e., {0, 0.15, 0.23, 0.38, 0.6, 0.88, 1.18, 1.48, 1.91, 2.41, 2.73, 3.32,
3.90, 4.52, 5.11, 5.55} (in bits). The scaled penalty parameter ε̃ is
set as 10−4/P . For simplicity, we set σ2

k = 1 and λk = 1 for all
k. All the channel coefficients are randomly generated following
an i.i.d. complex Gaussian distribution with zero mean and unit
variance, and all results were averaged over 1,000 channel trials.
We remark that exact solution methods for problem (1), e.g., the
branch-and-bound method in [9], are computationally too slow to
run in this scenario. Here, the unquantized WMMSE algorithm may
serve as an upper bound to the sum rate performance.

In the first example, we investigate the sum rate performance of
the various methods when changing the normalized transmit power
budget P . The results are plotted in Fig. 1. As seen, the performance
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Fig. 1. Achievable sum rate against the total power budget.

Fig. 2. Achievable sum rate against iteration no. for P = 21 dB.

of the proposed algorithm with iterative refinement is very close to
that of the unquantized WMMSE, and outperforms the quantized
WMMSE and Algorithm 1 of [9] over the whole range of powers
tested. However, we should mention that the proposed algorithm has
a slightly higher computational complexity than Algorithm 1 in [9].
There is a trade-off between complexity and sum rate performance.

In the second example, we fix the power budget as P = 21 dB
and plot the sum rate obtained by the proposed iterative refinement
against the iteration number, for one random channel realization. For
each iteration, the resulting discrete sum rate is obtained by quantiz-
ing the rates returned by solving (9). The results are shown in Fig. 2.
It can be seen that without the iterative refinement (i.e., the iteration
number being zero), the discrete sum rate obtained from the solution
of (8) is far less than that of the unquantized WMMSE. However,
as the iteration number increases, iterative refinement improves the
sum rate gradually, and approaches the unquantized WMMSE.

The last example compares the transmit powers of the proposed
algorithm and Algorithm 1 under the same setting as in Fig. 1. The
results are shown in Table 1. We can see that the proposed algorithm
requires less transmit power, and meanwhile attains higher sum rates
than Algorithm 1 (cf. Fig. 1 for the rate comparison). The proposed
algorithm is thus more power efficient under the tested scenario.

5. CONCLUSION

In this paper we have considered a discrete weighted sum rate max-
imization (DSRM) problem, and proposed a pragmatic approach to
handling this challenging problem. In particular, we have developed
a novel reformulation of DSRM. Based on this formulation, a new
convex approximation-based algorithm was developed. Simulation

Table 1. Minimum transmit power for different power budgets.

Normalized power budget Proposed Algorithm 1 [9]

6 dB 5.72 dB 5.97 dB

15 dB 14.78 dB 14.93 dB

27 dB 23.11 dB 24.77 dB

results confirmed the efficacy of the proposed approach.

6. APPENDIX

6.1. Proof of Observation 1

Our proof follows an idea similar to the proof of Claim 1 in [18].
First, it is obvious that any optimal solution to (5) is power mini-
mal as the penalty term ε

∑K
k=1 Tr(Wk) corresponds to the trans-

mit power. It remains to prove that any optimal solution to (5) is also
optimal to (2).

In the following, we omit the dependence of f ik(·) on {Wk}Kk=1

for notational convenience. Let υ({f ik}) ,
∑K
k=1 λk

∑M
i=1(Ri−1−

Ri)f ik and {W ?
k , (f

i
k)?} denote the objective and an optimal so-

lution of (2), respectively. A key observation on (2) is that the
objective function υ({f ik}) takes on discrete values as f ik is the
cardinality function such that f ik ∈ {0, 1}. The minimum ‘step size’
is mink,i λk(Ri − Ri−1) (cf. (3)). Now, suppose on the contrary
that there exists an optimal solution to (5), say {W k, f

i

k}, that is
not optimal to (2). Then we have:

υ({f̄ ik}) ≤ υ({(f ik)?})−min
k,i

λk(Ri −Ri−1). (10)

Furthermore, for 0 < ε < mink,i(λk(Ri −Ri−1)/P ), we have

ε
∑K
k=1 Tr(Wk) < mink,i λk(Ri −Ri−1). (11)

Combining (10) with (11), we get:

υ({f̄ ik})− ε
K∑
k=1

Tr(W k) < υ({(f ik)?})− ε
K∑
k=1

Tr(W ?
k ), (12)

where we have exploited the fact that υ({f̄ ik})−ε
∑K
k=1 Tr(W k) ≤

υ({f̄ ik}) to obtain a lower bound on the left hand side of (10). How-
ever, inequality (12) contradicts the optimality of {W k, f

i

k}.

6.2. Proof of Proposition 1

Let {W ?
k } be an optimal solution to (8), and denote (zik)? ≥ 0,

υ? ≥ 0 and X?
k � 0 as the dual variables associated with the con-

straint µik ≥ rk({Wl}Kl=1, R
i), the power budget constraint and the

positive semidefinite constraint, respectively. The first order neces-
sary optimality condition of (7) can be shown to be

X?
k = ε̃I +

∑
m 6=k

M∑
i=1

(zim)?RihmhHm −
( M∑
i=1

(zik)?Ri

2Ri − 1

)
hkh

H
k ,

(13)for all k, and the complementary slackness condition is:

X?
kW

?
k = 0, ∀ k. (14)

Condition (13) and (14) suffice to prove our claim in Proposition 1.
Observe that for ε̃ > 0, ε̃I is of full-rank and hkh

H
k is of rank one.

Hence, from (13), the rank of X?
k must be greater than or equal to

N − 1. It then follows from (14) that rank(W ?
k ) ≤ 1 for all k.
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