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ABSTRACT

The recent increased interest in massive multiple-input multiple-
output systems, combined with the cost of the analog RF chains,
necessitates the use of efficient antenna selection (AS) schemes.
Capacity or SNR optimal AS has been considered to require an
exhaustive search among all possible antenna subsets. In this work,
we prove that the maximum-SNR transmit AS problem with two
receive antennas is polynomially solvable and develop an algorithm
that solves it with quartic complexity, independently of the number
of selected antennas. Our method also applies to receive AS with
two transmit antennas.

1. INTRODUCTION

The cost and complexity of the analog RF chains connected to the in-
expensive antenna elements at both sides of multiple-input multiple-
output (MIMO) systems [1], [2] is a limiting factor on the number
of the antennas that may operate in practice. A low-cost engineer-
ing technique that reduces the number of analog chains required is
antenna selection (AS) where a number of limited transmit/receive
RF chains are multiplexed between a selected set of transmit/receive
antennas. AS for MIMO has been studied extensively in literature
and research works have dealt with either transmit AS (TAS), re-
ceive AS (RAS), or joint transmit-receive AS [3]. However, since
there has recently been an increased interest in large-scale multiple-
antenna wireless systems [4], [5], often called massive MIMO [6],
the need for AS algorithms that efficiently select the antennas is of
major importance.

In the past, AS has been considered to maximize either chan-
nel capacity [7]-[12], minimum post-processing SNR [13], sta-
tistical quantities such as average throughput [14], or effective
SNR [1], [2], [15]. All these works present suboptimal algorithms,
since the optimal solution is considered to require the evaluation
of the metric of interest over all

(

N

K

)

possible combinations of AS
sets, where N and K are the numbers of available and selected,
respectively, antennas. Due to the exponential complexity of the
exhaustive-search maximum-predetection-SNR AS, a suboptimal
hybrid algorithm that performs RAS to maximize the receiver pre-
detection SNR with complexity O(N) was considered in [16] where
the authors design the beamforming vector at the transmitter side as
the principal right singular vector of the full channel matrix.

In this paper, we prove that the maximum-SNR joint beamforming-
AS problem at the transmitter side for two receive antennas and an
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arbitrary number of K selected transmit antennas is polynomially
solvable and develop an algorithm that solves this problem with
complexity O

(

N4
)

. This result is possible after introducing an
auxiliary vector that partitions our problem into multiple subprob-
lems, each with complexity O(N). The maximum number (upper
bound) of subproblems (hence, candidate solutions) that we obtain
is 6

(

N

3

)

. The optimal selection is then determined by a polynomial-
time exhaustive search among those candidate selection sets. Our
result also applies to RAS with two transmit antennas.

2. SIGNAL MODEL AND PROBLEM STATEMENT

We consider a MIMO system that consists of N transmit and M re-
ceive antennas. The channel between any transmit and receive anten-
nas is assumed flat fading and theM×N complex baseband channel
matrix is denoted by H = [h1 h2 . . . hM ]H where hHm is a com-
plex row vector that contains the channel coefficients between theN
transmit antennas and the mth receive antenna, m = 1, 2, . . . ,M .

The transmitter selects K (out of the N ) antennas and employs
beamforming to transmit symbol x ∈ C. We can equivalently say
that it uses a beamforming vector w ∈ CN subject to the constraint
‖w‖0 = K. We also assume without loss of generality (w.l.o.g.)
that all transmitted power is absorbed by the channel matrix, there-
fore ‖w‖ = 1 and E{|x|2} = 1. We note that per-antenna power
constraints and unimodular beamforming were examined in [17].

The downconverted and pulse-matched filtered received vector

of size M × 1 is y
△
= Hwx + n where n ∈ CM is a zero-mean

additive white complex noise vector with variance 1 w.l.o.g. Since
y represents an unknown vector signal in white vector noise, the

maximum-SNR filter is the matched filter f
△
= Hw whose output

is given by fHy = ‖Hw‖2 x + wHHHn. Then, the filter output
SNR is

E{|x|2} ‖Hw‖4

‖Hw‖2
= ‖Hw‖2 . (1)

Eq. (1) shows how the predetection SNR is related to the beamform-
ing vector.

Our objective is to jointly select K antennas and optimize the
beamforming vector w to maximize the predetection SNR in (1).
That is, we seek w that solves the problem

max
w∈CN

‖w‖=1,‖w‖0=K

‖Hw‖ = max
I⊂[N]
|I|=K

max
w∈CK

‖w‖=1

‖H:,Iw‖ , (2)

where [N ]
△
= {1, 2, . . . , N}. In (2), the optimization problem has

been rewritten as two nested problems; the outer one is the antenna
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selection problem where set I contains the indices of theK selected
antennas and the inner one is the beamforming problem for the par-
ticular antenna selection where w ∈ CK is the “pruned” beamform-
ing vector that consists of the K nonzero loadings of w ∈ C

N .
For a fixed antenna selection I, we denote the optimal beamforming
vector of the inner maximization as

w(I)
△
= argmax

w∈CK

‖w‖=1

‖H:,Iw‖ . (3)

It is straightforward to see that w(I) is given by the right singu-
lar vector of H:,I that corresponds to its principal singular value
σmax (H:,I), simply called the “principal right singular vector,” and
leads to a maximum SNR value (for a fixed selection I) equal to
σ2
max (H:,I). That is, (2) is rewritten as

max
I⊂[N]
|I|=K

σmax (H:,I) . (4)

To optimally select the K transmit antennas, according to (4), we
need to find the K columns of H that form the M ×K submatrix
with the maximum principal singular value. The elements of the op-
timal set I that solves (4) are the indices of the optimally selected
antennas. Then, for these optimal indices, the optimal “pruned”
beamforming vector is given by the principal right singular vector
of H:,I .

A straightforward approach to solve (4) and identify the optimal
set I would be an exhaustive search among all

(

N

K

)

cardinality-K
subsets of [N ]. However, if the number of selected transmit antennas
K is a linear function of the total number of transmit antennas N ,
then such a solver would be impractical even for moderate values
of N , since its complexity grows exponentially with N . Even in
the case where K is not a function of N , if N is large enough (e.g.
N = 100 as in massive MIMO [5]) and K is, for example, equal to
or greater than 5, then the complexity of the exhaustive search would
still be too large to consider for practical implementation. In the next
section, we present an efficient algorithm that solves (4) in time that
is polynomial inN for any fixed number of receive antennas M = 1
orM = 2 and any unrestricted number of selected transmit antennas
K (that is, even ifK grows linearly withN ). In fact, the complexity
of the proposed algorithm is independent of K and depends only on
N and M . Although the case M = 1 is straightforward, the case
M = 2 is challenging and our solution is intuitive in the sense that it
may lead to a general polynomial-complexity solution for any fixed
number of receive antennas M .

3. POLYNOMIAL-COMPLEXITY OPTIMAL TRANSMIT
ANTENNA SELECTION

3.1. M = 1 receive antenna

We consider the trivial case of transmit antenna selection with one
receive antenna (M = 1). We do so to identify some interesting
properties that will be useful in the design of the algorithm for opti-
mal transmit antenna selection with two receive antennas (M = 2)
in the next subsection.

Since M = 1, the channel matrix becomes H = hH and, for
a fixed selection set I, we have H:,I = hHI . Then, the optimal
pruned beamforming vector in (3) is the maximal-ratio combining
(MRC) vector w(I) = hI

‖hI‖
and (2) becomes

max
I⊂[N]
|I|=K

∣

∣

∣

∣

h
H
I

hI

‖hI‖

∣

∣

∣

∣

= max
I⊂[N]
|I|=K

‖hI‖ (5)

which is equivalent to the maximization

max
I⊂[N]
|I|=K

‖hI‖1 = max
I⊂[N]
|I|=K

∑

i∈I

|hi| , (6)

since the optimal set I in both (5) and (6) is the one that consists of
the indices of the K largest elements of |h|.

To describe the latter step, we introduce function select which
selects the k largest (in magnitude) elements of a vector, as follows.

select(u; k)
△
= argmax

I⊂[N]
|I|=k

‖uI‖ = argmax
I⊂[N]
|I|=k

‖uI‖1 . (7)

That is, select(u; k) computes |h1|, |h2|, . . ., |hN | and returns the
indices of the largest k values. It turns out that the outcome of
select(u; k) is a set I such that |hi| ≥ |hj | for any i ∈ I and
j ∈ [N ]− I. The computational cost of select(u; k) is O(N) [18].

We conclude that the maximum-SNR transmit antenna selection
when one receive antenna is occupied by the receiver is given by
I = select(h;K) whose complexity is linear in the number of avail-
able transmit antennas N . In the developments that follow, select is
critical in proving that optimal antenna selection can be solved in
polynomial time when M = 2.

3.2. M = 2 receive antennas

When two receive antennas are utilized (M = 2), the channel matrix
is H = [h1 h2]

H , and the problem of selecting the optimal subset
of K transmit antennas in (2) becomes more challenging. In this
subsection, we show that this problem can be solved with complexity
O

(

N4
)

for any number of selected transmit antennas K.
First, we redefine the problem space by introducing the auxiliary

angles φ ∈
[

0, π
2

]

and θ ∈ (−π, π] and defining the unit-norm 2×1
vector

c(φ, θ)
△
=

[

sin(φ)
ejθ cos(φ)

]

. (8)

In the following, we will see that φ and θ help us identify a poly-
nomial number of locally optimal candidate selection sets I. The
optimal solution of (4) will be among the locally optimal ones.

Due to the unity of the norm of c(φ, θ), from Cauchy-Schwarz
Inequality, we obtain, for any vector a ∈ C2,

∣

∣

∣
a
H
c(φ, θ)

∣

∣

∣
≤ ‖a‖‖c(φ, θ)‖ = ‖a‖. (9)

The equality above is achieved if and only if c(φ, θ) is collinear with
a within a phase rotation such that its first element is real positive,
i.e., if and only if

c(φ, θ) =
a

‖a‖
e
−jarg(a1) (10)

where a1 is the first element of a. We note that, for any a ∈ C2,

there always exists a pair of angles (φ, θ) ∈ Φ, where Φ
△
=

[

0, π
2

]

×
(−π, π], such that (10) is satisfied. Therefore, from (9), we obtain
‖a‖ = max(φ,θ)∈Φ

∣

∣aHc(φ, θ)
∣

∣ for any a ∈ C2.
If we substitute a withH:,Iw in (2), then our optimization prob-

lem becomes

max
I⊂[N]
|I|=K

max
w∈CK

‖w‖=1

‖H:,Iw‖ (11)

= max
I⊂[N]
|I|=K

max
w∈CK

‖w‖=1

max
(φ,θ)∈Φ

∣

∣

∣w
H
H
H
:,Ic(φ, θ)

∣

∣

∣ .
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We define u(φ, θ)
△
= HHc(φ, θ) and change the order of the maxi-

mizations in (11) to obtain

max
(φ,θ)∈Φ

max
I⊂[N]
|I|=K

max
w∈CK

‖w‖=1

∣

∣

∣w
H
uI(φ, θ)

∣

∣

∣ . (12)

For any given pair of angles (φ, θ) ∈ Φ and any given selection
subset I ⊂ [N ], the inner maximization in (12) is achieved by the
pruned beamforming vector

w(φ, θ; I)
△
=

uI(φ, θ)

‖uI(φ, θ)‖
, (13)

resulting in the value max
w∈CK

‖w‖=1

∣

∣wHuI(φ, θ)
∣

∣ = ‖uI(φ, θ)‖.

Then, the optimization problem in (12) becomes

max
(φ,θ)∈Φ

max
I⊂[N]
|I|=K

‖uI(φ, θ)‖ (14)

where, for any given (φ, θ) ∈ Φ, the inner maximization is achieved
by the subset that consists of the indices of the K largest elements
of |u(φ, θ)|, i.e.,

I(φ, θ)
△
= argmax

I⊂[N]
|I|=K

‖uI(φ, θ)‖ = select(u(φ, θ);K). (15)

Notice that, for any n ∈ [N ], |un(φ, θ)| =
∣

∣HH
:,nc(φ, θ)

∣

∣ =
∣

∣H∗
1,n sinφ+H∗

2,ne
jθ cos φ

∣

∣, i.e., every element of |u(φ, θ)| is a
continuous function, or a surface, of (φ, θ). When, due to (15),
we select the K largest elements of |u(φ, θ)| at a given point
(φ, θ) as function select requires, we actually compare the surfaces
|u1(φ, θ)|, |u2(φ, θ)|, . . ., |uN (φ, θ)| at point (φ, θ). The optimal
selection I ⊂ [N ] in (12), i.e., the solution of (4), is met if we scan
the entire space Φ and collect the locally optimal selection I(φ, θ)
for any point (φ, θ) ∈ Φ.

A natural question that arises is the following. How many selec-
tion subproblems are induced if we scan all values of (φ, θ) ∈ Φ?
An answer to the previous question identifies exactly the number of
locally optimal solutions for (4).

The auxiliary angles φ, θ now become relevant in answering the
above question. Due to the continuity of the surfaces |un(φ, θ)|,
we expect that in an area around (φ, θ) the selection subset I(φ, θ)
will be retained because either the sorting of the surfaces does not
change (although the surfaces vary) or the sorting of the surfaces
changes but the group of the K surfaces with the higher value is
retained (that is, the change of the sorting occurs either within the
higher K surfaces or within the lower N − K surfaces). Hence,
we expect the formation of regions in Φ within which the locally
optimal selection subset I is unique. In the sequel, we determine
all these regions, show that their number is less than or equal to
6
(

N

3

)

, and present a polynomial-time algorithm that identifies the
selection subsets I that are associated with these intervals. Once we
have collected all candidate subsets, the solution of (4) is determined
through a polynomial-time exhaustive search among them.

We begin by noting that, as we scan the space Φ, the selection
subset I does not change unless two surfaces intersect (which im-
plies that the sorting of the surfaces changes). Therefore, to identify
all regions that retain their selection subset I, it suffices to examine
when two surfaces intersect. We note that this is a necessary, but not
sufficient, condition for a change of I, since the intersecting surfaces
may correspond to elements of |u(φ, θ)| that, before they intersect,

−π −π/2 0 π/2 π
0

π/4

π/2

θ

φ

L2,3

L2,4

L3,4

L1,4

L1,3

L1,2

L2,3

L2,4

L3,4

L1,4

L1,3

L1,2

Fig. 1. An illustration of intersection curves Ln,m, for n,m ∈
{1, 2, 3, 4} with n 6= m, and formed regions, resulting from N = 4
surfaces.

both belong to I or neither belongs to I. In the latter case, although
the magnitude sorting of the surfaces changes, the selection subset I
does not.

Two surfaces, say |un(φ, θ)| and |um(φ, θ)|, intersect when
|un(φ, θ)| = |um(φ, θ)|. We note that, for any n,m ∈ [N ], the
intersection of |un(φ, θ)| and |um(φ, θ)| always exists, since all
surfaces meet 0 for some φ, θ.1 As a result, the intersection of two
surfaces determines a curve on the (φ, θ)-plane which we define

as Ln,m
△
= {(φ, θ) ∈ Φ : |un(φ, θ)| = |um(φ, θ)|}. To illustrate

this, in Fig. 1, we set N to 4, consider an arbitrary 2 × 4 channel
matrix H, and plot curves Ln,m, for any n,m ∈ [N ] with n 6= m.
We observe the regions that are formed; within each region, the
selection subset I remains the same. We also observe that, in most
of the cases, each region “touches” an intersection of two or three
curves.2 That is, we can identify these regions by examining in-
tersections between curves Ln,m. In addition, we can concentrate
only on intersections of three curves and ignore intersections of
two curves, since the latter change the sorting of surfaces but do
not “generate” a new subset I that has not been generated by a
neighboring three-curve intersection.

To examine all three-curve intersections, we observe that each
such intersection corresponds to a three-surface intersection (other-
wise, more curves would pass through the intersection point, some-
thing that happens w.p.0). Hence, it suffices to find when three sur-
faces, say |un(φ, θ)|, |um(φ, θ)|, and |ul(φ, θ)|, where n,m, l ∈
[N ] with n 6= m, n 6= l, and m 6= l, intersect. That is, we
have to find (φ, θ) that satisfies

∣

∣HH
:,nc(φ, θ)

∣

∣ =
∣

∣HH
:,mc(φ, θ)

∣

∣ =
∣

∣HH
:,lc(φ, θ)

∣

∣ or, equivalently,

[

ejλHH
:,n −HH

:,m

ejµHH
:,n −HH

:,l

]

c(φ, θ) =

[

0
0

]

(16)

for some λ, µ ∈ R. A solution to (16), i.e., an intersection between
the three surfaces, exists if and only if there exist λ, µ ∈ R that make

the matrix A =

[

ejλHH
:,n −HH

:,m

ejµHH
:,n −HH

:,l

]

singular. We define the 2×1

vector d
△
= [H:,m H:,l]

−1
H:,n and the scalarD

△
= 1−‖d‖2

2|d1d2|
. Then,

1For any surface |un(φ, θ)| =
∣

∣HH
:,nc(φ, θ)

∣

∣, we can always find a vec-
tor c(φ, θ) which is orthogonal to H:,n.

2The case where a region does not touch any intersection is examined in
the end of this subsection.
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after algebraic computations, we can prove that |D| ≤ 1 is a neces-
sary and sufficient condition to make A singular. If the condition is
not satisfied, then no intersection exists between the three surfaces
(and three corresponding curves). If the condition is satisfied, then

we set ψ
△
= −angle(d1d∗2)±cos−1D and ω

△
= angle

([

1 e−jψ
]

d
)

and can prove, after algebraic computations, that A becomes singu-
lar when λ = ω and µ = ψ + ω. Then, c(φ, θ) is the unit-norm
vector in the null space of A. Finally, from (8), we can uniquely
determine the intersection point (φ, θ). Since there are two values of
ψ that make A singular, we obtain two intersection points.

For any combination of three surfaces, the above procedure, with
complexity O(1), examines if they intersect and, if so, also computes
the two intersection points (φ, θ). Each intersection point is a vertex
of six regions. Then, function I = select(u(φ, θ);K) computes,
with complexity O(N), the indices of the K largest surfaces. We
recall that, at the intersection point, all three surfaces that intersect
have the same value. If I contains the indices n,m, l of the three
surfaces that intersect or it does not contain either of them, then I is
the common optimal selection subset for all six neighboring regions.
Otherwise, we have to consider three different cases for the index
among n, m, and l that belongs or does not belong to I. Overall, for
each combination of three surfaces, we obtain at most 6 candidate
sets I with complexity O(N). Since the total number of surfaces is
N , the overall number of candidates is upper bounded by 6

(

N

3

)

.
Finally, regarding the case where a region does not touch any

intersection, we can see that such a region touches a curve Ln,m
which does not intersect with any other curve. For example, in Fig. 1,
such a curve is L1,2. Therefore, when we examine the three-surface
intersections, as described before, we should mark the correspond-
ing curves and, in the end, if a curve, say Ln,m, is unmarked, then
we should examine it separately as follows. We just need to pick a
point on Ln,m by solving

∣

∣HH
:,nc(φ, θ)

∣

∣ =
∣

∣HH
:,mc(φ, θ)

∣

∣ or, equiv-
alently,

(

ejλHH
:,n −HH

:,m

)

c(φ, θ) = 0 for some λ ∈ R. Actually,
we can set λ to zero, obtain c(φ, θ) as the unit-norm vector in the
null space of HH

:,n−HH
:,m, and, from (8), uniquely determine the in-

tersection point (φ, θ). We note that the existence of such unmarked
curves does not increase the complexity of our algorithm since, at the
same time, we avoid the computation of many candidates that would
have been generated if the curve had participated in any three-curve
intersection(s).

In the end, we keep at most 6
(

N

3

)

= O
(

N3
)

candidate selection
subsets I and compare with each other against the metric of inter-
est in (4). This way, we solve the maximum-SNR transmit antenna
selection problem with complexity O

(

N4
)

, independently of K.

4. M > 2 RECEIVE ANTENNAS

For simplicity of the presentation, we concentrated our analysis and
developments to the two-receive-antenna (M = 2) case. If M >

2, then we could introduce more auxiliary angles and work on the
multidimensional space with the help of the M × 1 vector

c(φ,θ)
△
=















sinφ1

ejθ1 cos φ1 sinφ2

...
ejθM−2 cos φ1 . . . cos φM−2 sinφM−1

ejθM−1 cosφ1 . . . cosφM−2 cosφM−1















. (17)

Eventually, we have to work as in the case M = 2 to identify all
intersection points of hypersurfaces and determine the candidate so-
lution subsets I of neighboring regions. At this time, we have not
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Fig. 2. Bit error rate versus total number of receive antennas N for
M = 2 transmit antennas and selection of K = 6 receive antennas.
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Fig. 3. Complexity versus total number of receive antennas N for
M = 2 transmit antennas and selection of K = 6 receive antennas.

finalized the methodology and algorithm for M > 2, therefore we
can only conjecture that the complexity is still polynomial, following
the above steps.

5. SIMULATION RESULTS

To illustrate our developments, although we presented our method
for TAS, we consider a MIMO system with 2 transmit andN receive
antennas and performK = 6 RAS to allow for comparisons with the
RAS method in [16]. The presented results are averages over 1000
i.i.d. Rayleigh channel realizations.

In Fig. 2, we set the total transmit SNR to −3dB and plot the
bit error rate (BER) as a function of the available receive antennas
N when K = 6 receive antennas are selected optimally by our pro-
posed algorithm with complexity O

(

N4
)

. We compare against the
RAS method in [16] (of complexity O (N)) and the random RAS.
As a reference, we also include the BER of the optimal RAS when 1
transmit antenna is occupied; the latter has complexity O (N).

In Fig. 3, we plot the corresponding complexity (in term of num-
ber of candidate AS sets that are examined) of our proposed algo-
rithm, together with the corresponding upper bound 6

(

N

3

)

, and the
exhaustive-search complexity. Our algorithm offers significant com-
putation gains in comparison with the exhaustive-search solution,
without losing optimality. These gains are offered in conjunction
with performance improvement, as indicated in Fig. 2.
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