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ABSTRACT

We focus on a linear beamformer design in the downlink with

statistical channel state information (CSI) at the transmitter,

where the users’ ergodic rates are balanced. Simplifying the

fading channels to given vectors with random scalar factors,

which is a good approximation for rural mobile or satellite

communications (SatCom), the stochastic model mismatch is

kept small albeit the ergodic rate structure now allows for

adapting the perfect CSI balancing algorithms. Although

there is no equivalent signal-to-interference-and-noise-ratio

(SINR) reformulation for the ergodic constraints, tight inner

approximations with SINR structure are found. Based on this

observation, a locally optimal sequential approximation strat-

egy is proposed and a fixed point based implementation is

provided that requires only few iterations.

Index Terms— rate balancing; beamforming; statistical

CSI; ergodic rates; rank one channels; scalar perturbations

1. INTRODUCTION

The multi-user downlink with one multi-antenna transmitter

is well explored for terrestrial wireless communications. The

capacity is known [1] and various optimization criteria were

considered for linear and non-linear beamforming techniques.

Prominent examples are quality-of-service (QoS) optimiza-

tions with standard SINR requirements and SINR based bal-

ancing that can efficiently be solved via either convex opti-

mization tools or fixed point methods (e.g., [2–4]). Recently,

these advances where also considered for other communica-

tion scenarios, e.g., in satellite communications (SatCom) [5].

We consider the problem of maximizing the throughput

via linear beamforming in a vector broadcast channel (vector

BC) under limited total transmit power and for certain fixed

ratios of the different user rates. This problem is called rate

balancing in the literature (e.g., [6]) and it is closely related

to the standard QoS power minimization and SINR balancing.

Actually, it is identical to SINR balancing when all rate targets

are equal and can be solved very efficiently using standard
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power minimization methods (e.g., [7, 8]). Therefore, QoS

optimization and balancing methods were also applied to the

multiple-input multiple-output broadcast channel and multi-

carrier (OFDM) systems (e.g., [7, 9]).

In contrast to these perfect CSI methods, we consider only

statistical knowledge of the channel states at the transmitter’s

side and, therefore, address an ergodic rate balancing formu-

lation for the beamformer design. Whereas recent advances

were made for the probabilistic constraint case of QoS op-

timization (e.g., [10–12]), where rate requirements shall be

satisfied with certain probabilities, ergodic robust QoS opti-

mization and balancing problems have only received limited

attention in literature (e.g., [13]). The difficulties are the gen-

eral lack of a duality between the Gaussian multiple-access

channel (MAC) and BC with statistical transmitter CSI [14]

and the missing convex reformulations for minimal require-

ments on the ergodic rates.

Due to all the difficulties in optimization with ergodic

rate expressions, we focus on a ‘rank-one’ Gaussian channel

model that is accurate for a large distance from the transmit-

ter to the receivers. The so obtained ergodic rate balancing

problem was also addressed in [8, 15, 16]. While [8] and [15]

considered suboptimal solutions based on partial zero-forcing

and bounding the ergodic requirements, a globally optimal

branch and bound technique was applied in [16] that, how-

ever, is computationally unattractive due to its exponential

complexity. Here, we propose a locally optimal sequential op-

timization method based on [17] for solving the ergodic rate

balancing. With tight inner constraint approximations, we are

able to reformulate the problem at hand into SINR structure

and adapt the fixed point method from [7] (see Section 5).

Moreover, we do not restrict ourselves to the zero-mean case

here, as in the previous publications, and recast the formula-

tions for general Gaussian scalar randomness in the channels.

For these purposes, the rest of the work is structured as

follows. We present the system model, the channel statistics,

and the ergodic rate metric in Section 2. The balancing op-

timization is introduced in Section 3 and the tight sequential

approximation method is shown in Section 4, which also in-

cludes a convergence discussion. An algorithmic implemen-

tation of the inner problem solution is given afterwards in Sec-

tion 5, before we finally provide some numerical results.
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2. SYSTEM AND CHANNEL MODEL

We consider a vector BC, where an N -antenna transmitter

serves K mobiles in the same frequency band. At the trans-

mitter, independent unit-variance data signals sk ∼ NC(0, 1)
are linearly precoded with the beamforming vectors tk ∈ CN ,

k ∈ {1, . . . ,K}. The superimposed signal x =
∑K

i=1 tisi is

transmitted over the channels to the receivers, which suffer

from additive Gaussian noise nk ∼ NC(0, 1). Therefore, the

received signal of user k is yk = h
H
k tksk+h

H
k

∑

i6=ktisi+nk,

where hH
k ∈ C1×N denotes the frequency flat fading channel

vector corresponding to user k. This leads to the following

expression for the achievable rate:

rk = log2(1 + SINRk), (1)

with the signal-to-interference-plus-noise-ratio (SINR)

SINRk =
|hH

k tk|
2

1 +
∑

i6=k |h
H
k ti|

2
. (2)

Since above rate metric strongly depends on the state hk

of the channel, accurate information is required at the trans-

mitter for the beamformer design. This information may be

obtained via pilot based training and feedback or via uplink

training in time-division-duplex systems. However, in fast

fading scenarios and for long round trip times, only the statis-

tics of the channels hk ∼ NC(mk,Ck) can be obtained. For

example, consider the data transmission to moving receivers

that are surrounded by scatterers. Thus, we switch to the er-

godic rates E[rk], k ∈ {1, . . . ,K} as performance measures.

The problem with the ergodic rates is that their closed

form expressions are involved functions of the precoders con-

taining integrals over the product of hypergeometric and ex-

ponential functions that require numerical computations [18].

This makes it intractable for beamformer optimizations, es-

pecially when K and N are large. To overcome these draw-

backs, we consider a special CSI model that allows for a

tight approximation of E[rk]. Especially, we assume that the

transmitter is far distant from the receivers and shadowing

and scattering effects are solely close to the mobiles, e.g., as

in rural terrestrial environments or SatCom. Then, the spa-

tial channel characteristics can be estimated very well and

the randomness is merely captured by the gain. That is, we

model the channels as hk ≈ h̃k = vkwk(hk), where vk and

the random scalar wk(hk) minimize the mean square error

E
[

‖hk−h̃k‖22
]

, i.e., wk(hk)=v
H
k hk and vk is the unit-norm

dominant eigenvector of mkm
H
k +Ck [19].

This leads to the ergodic rate expression [18]

Rk = E[r̃k] = gk

( K
∑

i=1

|vH
k ti|

2
)

− gk

(

∑

i6=k

|vH
k ti|

2
)

. (3)

The scalar functions gk : R+ → R+, x 7→ gk(x) read as

gk(x) = E
[

log2(1 + |wk(hk)|
2x)

]

(4)

= e
− |mk|2

σ2
k

∫ ∞

0

log2(1 + xσ2
kt) e

−t
0F1

(

; 1; t |mk|2
σ2
k

)

dt,

with mean mk = E[wk(hk)] = v
H
k mk, variance σ2

k =
E[|wk(hk) − mk|2] = v

H
k Ckvk, and the generalized hy-

pergeometric function 0F1(; ·; ·) [20]. The evaluation of (4)

requires numerical integration, but the outcomes can be tabu-

lated for mk, σ2
k, and x. For mk = 0, (4) simplifies to [20]

gk(x) =
1

ln(2) e
1

σ2
k
x E1

(

1
σ2
k
x

)

(5)

with the exponential integral E1(z) =
∫∞
z

e−t

t dt.

3. RATE BALANCING PROBLEM

For limited total transmit power Ptx, we want to maximize the

common factor ρ0 that balances the ergodic rates Rk regard-

ing their relative requirements ρk, k ∈ {1, . . . ,K}, i.e.,

max
ρ0,{tk}

ρ0 s. t.
∑K

k=1‖tk‖
2
2 ≤ Ptx, (6)

Rk ≥ ρ0ρk ∀k ∈ {1, . . . ,K}.

Even though no tractable reformulation of (6) is known for

ergodic constraints, we are aware of some basic properties.

Since the rates are increasing in the used transmit power,

it is Ptx at the optimum and the resulting rates are balanced,

i.e., Rk = ρ0ρk. Moreover, (6) is the inverse problem to the

power minimization in [21] with only ergodic rate require-

ments. Expressing the power minimization as

P (ρ0) = min
Ptx

{

Ptx : Ptx≥
∑K

i=1 ‖ti‖
2
2, Rk≥ρ0ρk∀k

}

(7)

and the optimum of (6) as ρ(Ptx), we can verify that (cf. [22])

P
(

ρ(Ptx)
)

= Ptx.

This means, (6) may be solved via a series of power minimiza-

tions (7) until the optimum equals Ptx, e.g., using bisection.

This procedure, however, leads to a high computational com-

plexity as the already complex locally optimal power mini-

mization from [21] or the even more complex globally opti-

mal branch-and-bound method from [16] has to be applied re-

peatedly. Therefore, a direct inner approximation method and

a suitable implementation is discussed in the next sections.

4. INNER APPROXIMATION TECHNIQUE

With (4) and Ik =
∑

i6=k |v
H
k ti|

2 for the interference power,

we recast the ergodic rate requirements in (6) as

gk
(

|vH
k tk|

2 + Ik
)

− gk (Ik) ≥ ρ0ρk. (8)

Similar to [21], we rewrite (8) as a minimum requirement for

the useful signal power. To this end, we add gk(Ik) on both

sides, take the inverse of gk, and subtract Ik to obtain

|vH
k tk|

2 ≥ fk(ρ0ρk, Ik) (9)

with the non-linear continuous function fk : R2
+ → R,

fk(c, x) = g−1
k

(

c+ gk(x)
)

− x,
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which is non-linearly increasing with x and c. In fact, fk(c, x)
is exponentially increasing in c for fixed x since gk(y) is log-

arithmically increasing with y. Moreover, fk(c, x) appears to

be concave and close to linear in x for fixed c (see Fig. 1).

Due to this property, an approximation of (9) that is tight

at Îk can be obtained via the linearization (cf. [21])

fk(ρ0ρk, Ik) ≈ αk(ρ0, Îk)Ik + βk(ρ0, Îk) (10)

where the slope αk reads as

αk(ρ0, x̂) =
∂fk(ρ0ρk,x)

∂x

∣

∣

∣

x=x̂
=

g′
k(x̂)

g′
k

(

g−1
k

(ρ0ρk+gk(x̂))
) − 1,

with the derivative

g′k(x) = e
− |mk|2

σ2
k

∫ ∞

0

tσ2
k

ln(2)(1+xσ2
k
t)
e−t

0F1

(

; 1; t |mk|2
σ2
k

)

dt,

which requires numerical integration, and the offset is

βk(ρ0, x̂) = fk(ρ0ρk, x̂)− αk(ρ0, x̂)x̂.

The linearization for mk = 0 can be simplified as in [21].

Replacing fk(ρ0ρk, Ik) by its linearization in (9), the re-

sulting demand for the useful signal power is still exponen-

tially increasing with ρ0, but linear in the interference power

on the right hand side, i.e.,

|vH
k tk|

2 ≥ αk(ρ0, Îk)
∑

i6=k|v
H
k ti|

2 + βk(ρ0, Îk). (11)

This allows for an approximate reformulation of (6) in SINR

constrained form, where efficient algorithmic solution meth-

ods based on SINR constrained QoS optimization are known

(e.g., see [7] and [8]). That is, defining the ergodic ‘signal-to-

interference-and-noise-ratio’ as

SINRk =
|vH

k tk|
2

βk(ρ0,Îk)

αk(ρ0,Îk)
+
∑

i6=k |v
H
k ti|

2
, (12)

we can approximate (6) via

max
ρ0,{tk}

ρ0 s. t.
∑K

k=1‖tk‖
2
2 ≤ Ptx, (13)

SINRk ≥ αk(ρ0, Îk) ∀k ∈ {1, . . . ,K}.

Note that the solution {t⋆k} of (13) is feasible for (6), but

in general suboptimal and only accurate if the approximation

is tight, i.e., Îk =
∑

i6=k |v
H
k t

⋆
i |

2 for all k ∈ {1, . . . ,K}.
This motivates an iterative procedure to solve (6), where the

following two steps are performed in the n-th iteration:

1. Î
(n)
k =

∑

i6=k |v
H
k t

(n−1)
i |2 for all k ∈ {1, . . . ,K}

2. and approximate (6) with (13) at Î
(n)
k to obtain {t

(n)
k }.

As an initialization, we use the maximum-ratio-combining

beamformers with equal power allocation, i.e., t
(0)
k = Ptx

K vk.

4.1. Convergence of Sequential Strategy

We remark that above sequential optimization procedure

globally converges to a locally optimal point if the constraint

set in (13) is a tight inner approximation of that in (6) within

each iteration [17]. That is, the linearization has to satisfy the

following three properties (cf. [17]):

(i) fk(ρ0ρk, Ik) ≤ αk(ρ0, Î
(n)
k )Ik + βk(ρ0, Î

(n)
k ),

(ii) fk(ρ0ρk, Î
(n)
k ) = αk(ρ0, Î

(n)
k )Î

(n)
k + βk(ρ0, Î

(n)
k ),

(iii) ∂
∂Ik

fk(ρ0ρk, Ik)
∣

∣

Ik=Î
(n)
k

= αk(ρ0, Î
(n)
k ).

Items (ii) and (iii) are clearly satisfied for the linearization of

a continuous differentiable function. Property (i) is satisfied

if fk(c, x) is concave in x, which happened in all cases that

we investigated in our numerical simulations (e.g., see Fig. 1).

We leave a rigorous proof of this property for future research.

5. ALGORITHMIC IMPLEMENTATIONS

For solving (13), we could apply a bisection over ρ0 as pro-

posed in [8], where in each bisection step it is tested whether

the current SINR requirements are achievable with the given

transmit power. Next, we present an alternative algorithmic

approach that has faster convergence speed.

This method requires a transformation to the dual MAC

according to [22]. Even though such a duality does not hold

for the ergodic rates, we can apply duality for the approxi-

mated constraints since we could rewrite the approximation

in terms of an ergodic SINR (13), which has the same struc-

ture as the conventional SINR (2). In the dual MAC, the re-

quirements read as

SINRMAC
k =

αk(ρ0,Îk)

βk(ρ0,Îk)
|vH

k uk|2pk

‖uk‖22 +
∑

i6=k
αi(ρ0,Îi)

βi(ρ0,Îi)
|vH

i uk|2pi
≥ αk(ρ0, Îk),

(14)
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Fig. 2. Plot of maximum ρ0 over Ptx in [dB] for a system with

K = N = 4 in an satellite system setup.

where the receive filters and transmit powers in the MAC are

denoted by uk and pk, k ∈ {1, . . . ,K}, respectively, and the

sum transmit power constraint is
∑K

i=1 pi ≤ Ptx. (15)

Note that given a set {tk} in the BC, the corresponding

MAC filters {uk} and powers {pk}, i.e., those that achieve

the same SINRs with the same sum transmit power, can be

obtained via solving a K-dimensional linear equation system

(cf. [22]), and vice versa. The BC-to-MAC transformation

is used to iteratively solve (13) in the MAC, starting from

the current BC operation point. The results are delivered to

the BC via the MAC-to-BC transformation for the subsequent

sequential approximation in the inner approximation strategy.

The solution approach for (13) in the MAC is from [7,

Section III.] and adapted to the given system. Based on

the fact that the optimal filters and powers in the MAC sat-

isfy (14), we write a power update from [23] as

p
(j+1)
k ←

αk(ρ
(j+1)
0 ,Îk)p

(j)
k

SINRMAC
k

. (16)

Since the optimal powers shall also satisfy (15) with equality,

we insert this update into (15) to require ρ
(j+1)
0 to fulfill

∑K
k=1

αk(ρ
(j+1)
0 ,Îk)p

(j)
k

SINRMAC
k

− Ptx = 0, (17)

which can be obtained via a fixed point search for ρ
(j+1)
0 , e.g.,

bisection. Iteratively performing (16) using ρ
(j+1)
0 from (17),

we solve (13) in the MAC. In contrast to [7], inserting the op-

timal u
(j)
k = (IN +

∑

i6=k
αi(ρ

(j+1)
0 ,Îi)

βi(ρ
(j+1)
0 ,Îi)

viv
H
i p

(j)
i )−1

vk, which

maximizes the SINR, into (16) and (17), the denominator in

αk(ρ
(j+1)
0 ,Îk)p

(j)
k

SINRMAC
k

=
1/βk(ρ

(j+1)
0 ,Îk)

v
H
k

(

IN+
∑

i6=k

αi(ρ
(j+1)
0 ,Îi)

βi(ρ
(j+1)
0 ,Îi)

viv
H
i p

(j)
i

)−1
vk

clearly depends on ρ
(j+1)
0 , why the inverse needs to be com-

puted several times for finding ρ
(j+1)
0 . Since the evaluations
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Fig. 3. Required number of inner iterations over the outer it-

eration number for K = N = 4 and various transmit powers.

of αk(ρ0, Îk) and βk(ρ0, Îk) can be tabulated, iteratively cal-

culating the inverse within update (17) dominates the compu-

tational complexity for solving (13) and therewith (6).

6. NUMERICAL COMPARISON

For a numerical performance analysis of the sequential ap-

proximation method, we used a similar system setup as

in [16], i.e., with a satellite geometry and a free space path

loss model for determining vk, k ∈ {1, . . . ,K}. However,

here, we set the mean to mk = 1√
2

and the variance to σ2
k = 1

2

for all channels of the system with K = N = 4. The users’

targets are chosen to be ρ1 = ρ3 = 1 and ρ2 = ρ4 = 2.

In Fig. 2, we plotted the (optimal) balancing level ρ0 ver-

sus Ptx in dB for four approaches. The lower and upper bound

curves are obtained via replacing Rk in (6) with the ergodic

rate lower bound and upper bounds Rk and Rk from [15].

Clearly, the locally optimal sequential approximation strategy

of Section 4 lies between these bounds as expected. For com-

parison, we have plotted the curve that is obtained by a series

of power minimizations. We see that the proposed method

achieves the same performance while avoiding the problems

of power minimizations that are discussed in Section 3.

For evaluating the complexity of the implemented sequen-

tial approximation, we plotted the number of inner fixed-point

iterations that are required within each sequential approxima-

tion update in Fig. 3 for Ptx ∈ {10dB, 20dB, 30dB}. As can

be seen, within the first approximations, the most inner iter-

ations are required until convergence. That is, the more ac-

curate the outer approximation is, the less inner iterations are

required since αk(ρ0, Îk) and βk(ρ0, Îk) are more accurate.

For a near future work, we leave a strict proof for con-

cavity of fk(c, x) in x, a complexity analysis of the proposed

algorithm, a comparison to a simplified version, where only

one iteration step of the inner power and filter update is per-

formed in the MAC, and a comparison of the resulting rates

to the actually achieved rates of vector Gaussian channels.
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