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A RECURSIVE LEAST SQUARES ALGORITHM WITH REDUCED COMPLEXITY FOR
DIGITAL PREDISTORTION LINEARIZATION

Saijie Yao Hua Qian

ABSTRACT

In digital predistortion (DPD) implementation, the computa-
tional complexity of coefficients estimation of the DPD model
is a key performance metric. Conventional coefficients esti-
mation algorithms, such as least squares (LS), recursive least
squares (RLS), and least mean squares (LMS) cannot achieve
a fast convergence with little computation. In this paper, we
propose an RLS algorithm with reduced complexity by in-
troducing orthonormal polynomial basis functions. The pro-
posed algorithm is as simple as LMS algorithm yet as efficient
as RLS algorithm. Simulation results validate our analysis.

Index Terms— Nonlinearity, predistorter, orthonormal,
recursive least squares, reduced complexity

1. INTRODUCTION

In modern communication systems, power amplifiers (PAs)
are always driven into nonlinear region to improve its effi-
ciency. DPD is a widely used technique to improve the power
efficiency of the PA while maintaining its linearity [1].

In terms of the DPD implementation, the computational
complexity of coefficients estimation of the DPD model is a
key performance metric. For example, the polynomial model
is a popular model in adaptive DPD systems as it is intuitive
to describe the characteristics of different PAs [2]. LS algo-
rithm can be applied for coefficients estimation. However, it
is difficult to update the model coefficients in real-time by in-
verting the data matrix directly [3]. For real-time processing,
RLS and LMS algorithms are attractive because the model co-
efficients can be updated sample by sample. RLS algorithm
replaced the matrix inversion with sample-by-sample vector
processing and reduced the computational complexity. LMS
algorithm consumes less hardware than the RLS algorithm.
However, the convergence speed of the LMS algorithm is s-
lower than that of the RLS algorithm. In this paper, by intro-
ducing orthonormal polynomial basis functions, we propose
an RLS algorithm with reduced complexity for the polyno-
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mial models. The proposed algorithm is as simple as LMS
algorithm yet as efficient as RLS algorithm.

The rest of the paper is organized as follows: Section 2
describes the architecture of an adaptive DPD system, and
introduces the conventional algorithms for predistorter coef-
ficients estimation. Section 3 defines the notation of the RLS
algorithm with reduced complexity, and discusses its hard-
ware complexity comparing with conventional LMS and RLS
algorithms. Section 4 shows the benefits of the proposed algo-
rithm in terms of convergence speed and linearization perfor-
mance by simulation results. Section 5 concludes this paper.

2. SYSTEM ARCHITECTURE AND
CONVENTIONAL ALGORITHMS

2.1. System Architecture

Adaptive DPD technique is attractive among all PA lineariza-
tion techniques as they providing good trade-off between
linearization performance and implementation cost. In most
practical implementations, indirect learning architecture [4]
with polynomial model is used to compensate the nonlin-
earity of the PA. Fig. 1 show an adaptive DPD system with
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Fig. 1. System architecture of an adaptive DPD system.

indirect learning architecture. As shown in Fig. 1, z(n) is
the input of the predistorter, y(n) is the output of the PA and
z(n) is the output of the predistorter as well as the input of
the PA. The PA output and input, y(n) and z(n), are used
to estimate coefficients of the predistorter, where Z(?’)) is ob-
tained from input samples x(n) given DPD coefficients from
the previous iteration. After the DPD coefficients estimation,
DPD coefficients in the predistorter block will be updated
accordingly.
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2.2. Conventional Algorithms

For predistorter estimation block in Fig. 1, polynomial model
derived in [2] can be applied,

Eazkl

where ¢(n) = [¢1(n),d3(n), -+, d2r-1(n)], dx(n) =
y()y(n)P*Y, an) = lai(n),as(n), -, azx-1(n)]"
and (-)T denotes the matrix transpose. The error signal is
presented as e(n) = z(n) — 2(n) = z(n) — ¢(n)a(n). The
objective function of LS algorithm is given by

(M)PEDy(n) = g(n)e(n). (1)

N N
arg ngn Z le(n)|* = arg ngnz |z(n) — a(n))?.
The LS solution of ax(n) is derived as [5]
a(n) = (8" (n)®(n)) " ®" (n)z(n), )
where z(n) = [2(1), 2(2),- -+, z(n)]7T,
#(1)
2
®(n) = ¢(: ) ) 3)
¢(n)

and () means the Hermitian transpose.

The predistorter coefficients ce(n) can not be updated in
real-time as the LS algorithm works on a block of data sam-
ples. Furthermore, it is difficult to invert a matrix direct-
ly on hardware platforms, especially when the matrix is ill-
conditioned. For real-time processing, RLS and LMS algo-
rithms are attractive because the model coefficients can be
updated sample by sample.

The procedure of the RLS adaptation is given by [6]:

(1 - —Pn =D me(n)
L+ ¢(n)P(n—1)¢" (n)

P(n—1)¢" (n)
L+ Pn—1)¢"(n) ©)
(2(n) — @(n)a(n — 1)),
where P(n) is the inversion of ®* (n)®(n) and is initialized
by P(0) = A~'I, X is an arbitrary small constant. In the
context of predistorter coefficients estimation, it is natural to
set «(0) = [1,0,---,0]7.
The procedure of the LMS adaptation is given by [6]:

p(n)a(n —1))¢" (n), (6)

P(n) = JP(n—1), (4)

an)=a(n—1)+

a(n—1)+6(z(n) —

a(n) =

where § is the step-size of LMS algorithm.
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3. AN RLS ALGORITHM WITH REDUCED
COMPLEXITY

Orthogonal basis functions presented in [5, 7] can help to al-
leviate the numerical instability during model coefficients es-
timation. In this paper, we define orthonormal basis functions
11 (n) on the fundamental of orthogonal basis functions. For
basis functions ) (n) and ¢;(n), they are orthonormal if the
following condition is satisfied:

Yk £ 1,

. 1, 0,
Eli(m)pi(n)] = > vi(n)un(n) = { 1, Vk=1.

n=1

With orthonormal basis functions, ®(n), ¢(n) and ¢y (n)
are corresponding to W(n), ¥(n) and 15 (n). The LS solution
in Eq. (2) can be rewritten as

B(n) = (€7 (n)¥(n)) ™"

According to the orthonormality, ¥ (n)® (n) = nI, Eq. (7)
is simplified as

O (n)z(n). )

Bln) = 8" (n)z(n). ®)

Unfold ¥* (n)z(n), we have
O (n)z(n) = 4 (n—1)z(n — 1)+ ¥ (n)z(n). (9)
Combining Eq. (8) and (9),

B(n) = Bln— 1)+ (+(n) ~ $(m)Bln— 1)) (1) (10

As indicated in Eq. (10), the LS solution 3(n) is updated
recursively, this algorithm should have the almost same per-
formance as RLS algorithm and the hardware complexity is
significantly reduced. In practical implementation, 1/n can
be calculated by a look up table (LUT) with n as its index.
The hardware complexity of the proposed algorithm is almost
the same as that of the LMS algorithm.

We learn from Eq. (6) and (10) that the only difference
is 6 and 1/n. For the LMS algorithm, when the 0 is set to
a large number, the LMS algorithm converges quickly with a
large overshoot; when the J is set to a small number, the LMS
algorithm converges slowly with a small overshoot. It is not
easy to choose a suitable ¢ for the LMS algorithm for different
application, on the other words, it is a disadvantage of this
algorithm. By replacing ¢ with 1/n, the proposed algorithm
can converges quickly with a small overshoot.

Be similar to orthogonal basis functions [5, 7], we need to
find an upper triangular matrix U, which constructs ¥ (n) =

®(n)U. For the data matrix,
() B(n) = U (n)®(n)U =nI.  (11)

We learn for Eq. (11) that for a given distribution of
ly|, @ (n)®(n) can be obtained, then the corresponding



upper triangular matrix U can be solved. For example, |y
is uniformly distributed in [0, 1], the (k,[)-th element of
& (n)®(n) is given by

nB[Jyf?

n
Z |y(m)|2k+21—2
m=1

= n / 162 )

1
"okt —1

then the (k, 1)-th element of U can be derived as

(2042k—3)!1V/Ak—1

I+k
(*1) - AT (k=) (2I—1) ! (k+1—2)!*

U=
1k { 0.

If |y| follows other distributions, the (k,[)-th element of
data matrix &7 (n)®(n) can also be solved. The closed-form
expression of the upper triangular matrix U may not be avail-
able. However, the corresponding U, j, can still be solved it-
eratively by setting the dimension of the matrix ® (n)®(n)
inEq. (11)to 1,2,. ...

1 <k,
> k.

4. SIMULATION PERFORMANCE

4.1. Convergence Speed

In order to verify the convergence speed of three different al-
gorithms, we apply an ARCTAN PA model

y = (ntan~(Gilzl) +retan ™ (Gl=)) S, (12)
where 71 = 8.00335 — j4.61157, v = —3.77167 +
712.03758, (1 = 2.26895 and (2 = 0.8234 [5]. The input is a

random signal distributed in [0, 1] and the SNR is 30dB. The
orthonormal basis functions with X = 9 is applied.
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- = LMS §=0.05
0 = ==RLS(RC)
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Iteration Number

Fig. 2. Convergence speed of three different algorithms.
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Fig. 2 shows the normalized mean squares error (NMSE)
vs. iteration number for three different algorithms. From left
to right, the pink line shows the convergence speed for RLS
algorithm, the blue line shows the convergence speed for the
proposed algorithm and the green line and red line show the
convergence speed for LMS algorithms with 6 = 0.05 and
¢ = 0.005 respectively.

As indicated in Fig. 2, the proposed algorithm achieves
almost the same performance with RLS algorithm; the two
lines of LMS algorithm reflect the trade-off between conver-
gence speed and overshoot.

Table 1 shows the differences among the different simu-
lation case in Fig. 2. We learn from Table 1 that the proposed
algorithm performs the almost same performance with RL-
S algorithm with the same hardware complexity with LMS
algorithm. When § = 0.05, the LMS algorithm conveges
quickly but the overshot is 15dB; when § = 0.005, the LMS
algorithm conveges slowly but the overshoot is 0.5dB.

Table 1. The differences among three algorithms.

Algorithm | Multipliers | Conv-Speed | Instability
RLS 60 200 0dB
RLS(RC) 11 300 0dB
LMS(0.05) 11 300 15dB
ILMS(0.005) 11 1500 0.5dB

The orthonormal basis functions are derived by assuming
that the input signal is uniformly distributed and the polyno-
mial model is memoryless. If the input signals are with other
distributions or the polynomial model is memory, the data ma-
trix & (n)®(n) is not an identity matrix, but the proposed
algorithm works as the numerical instability is still alleviat-
ed. For example, the input signal is a 20MHz bandwidth
IEEE802.11g signal, the same trends of convergence speed
for three different algorithms are shown in Fig. 3.
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Fig. 3. Convergence speed of three different algorithms.



4.2. Linearization Performance

To compare the linearization performance of the three algo-
rithms, we test a 20MHz bandwidth IEEE802.11g signal. In
general, orthogonal frequency division multiplexing (OFDM)
signals are regarded as complex gaussian distributed signals.
We use the same ARCTAN PA model in 4.1 and the orthonor-
mal basis functions with K = 9.

In our simulation, we drive the PA to the nonlinear region,
and test the performance for the three algorithms. The power
spectral destiny (PSD) at the PA output are shown in Fig. 4.
In Fig. 4, from top to bottom, the red line shows the PSD
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Fig. 4. PA output PSD.

at the PA output without DPD, the black line shows the PSD
at the PA output with LMS algorithm (§ = 0.005) using 500
samples, the green line shows the PSD at the PA output with
LMS algorithm using 2000 samples, the pink line shows the
PSD at the PA output with the proposed algorithm using 500
samples, the blue line shows the PSD at the PA output with
RLS algorithm using 500 samples.

As indicated in Fig. 4, with the same iteration number
500, the the proposed algorithm and RLS algorithm are con-
verged but the LMS algorithm is not converged; with the it-
eration number 2000, the LMS algorithm achieves the almost
same performance with the proposed and the RLS algorithm.

5. CONCLUSION

In most predistorter designs, the polynomial model is a pop-
ular model in adaptive DPD systems as it is intuitive to de-
scribe the characteristics of different PAs. The computational
complexity of coefficients estimation of the DPD model is
a key performance metric. LS algorithm cannot update the
model coefficients in real-time as it works on a block of data
samples. RLS and LMS algorithms are attractive because the
model coefficients can be updated sample by sample. RLS al-
gorithm replaced the matrix inversion with sample-by-sample
vector processing and reduced the computational complexity.
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LMS algorithm consumes less hardware than the RLS algo-
rithm. However, the convergence speed of the LMS algorith-
m is slower than that of the RLS algorithm. In this paper, by
introducing orthonormal polynomial basis functions, we pro-
pose an RLS algorithm with reduced complexity for the poly-
nomial models. In comparison, we test the three algorithms
in terms of convergence speed and linearization performance.
Simulation results show that the proposed algorithm is as sim-
ple as LMS algorithm yet as efficient as RLS algorithm.
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