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ABSTRACT

We develop a novel waveform design approach to min-

imize the likelihood that a message transmitted wirelessly

between trusted single-antenna nodes is intercepted by an

eavesdropper. In particular, first, with knowledge of the

eavesdropper’s channel state information (CSI) we find the

optimal waveform and transmit energy that minimize the

signal-to-interference-plus-noise ratio (SINR) at the output

of the eavesdropper’s maximum-SINR linear filter, while at

the same time provide the intended receiver with a required

pre-specified SINR at the output of its own max-SINR filter.

Next, if prior knowledge of the eavesdropper’s CSI is unavail-

able, we design a waveform that maximizes the amount of

energy available for generating disturbance to eavesdroppers,

termed artificial noise (AN), while the SINR of the intended

receiver is maintained at the pre-specified level. Simulation

studies demonstrate our analytical developments and illus-

trate the benefits of the designed waveforms on securing

single-input single-output (SISO) transmissions.

Index Terms— Artificial noise, eavesdropping, physical-

layer security, power allocation, signal-to-interference-plus

noise ratio, SISO wiretap channel, waveform design.

1. INTRODUCTION

By its broadcast nature, the wireless medium renders wireless

networks ubiquitously accessible and inherently non-secure.

Commonly used wireless security methods rely on crypto-

graphic (encryption) and steganographic (covert communica-

tion) means employed at upper layers of the wireless network.

It is still highly desirable, however, to enhance core security

of wireless communications by reducing the likelihood that

propagating signals are intercepted by eavesdroppers in the

first place. As a result, there has been growing interest in the

development of physical layer security mechanisms for the

wireless link.

While many works focus on information-theoretic aspects

and calculation/analysis of the achievable secrecy capacity

[1]-[19], there is a growing sense of urgency from the signal

processing perspective to provide actual algorithmic security

solutions that weaken the eavesdroppers’ intercepted signal
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and materialize -at least partly- the information theoretic se-

crecy capacity promises. Transmit (and receive) beamform-

ing designs [20]-[25] which utilize the spatial degrees of free-

dom were seen to enhance the physical layer secrecy of wire-

less communications by avoiding eavesdroppers’ interception

efforts as much as possible.

In this present work, we consider the problem of secure

transmissions over a multipath single-input single-output

(SISO) channel where both transmitter and intended re-

ceiver have only one antenna. In parallel to beamforming

approaches [20]-[25] which require multiple transmit (and

receive) antennas to weaken eavesdroppers’ receptions, we

turn our attention to waveform design -another meaningful

idea in physical-layer secrecy- which can exploit the temporal

characteristics of a SISO multipath fading channel between

trusted single-antenna nodes. We propose easy to compute

waveform and energy designs with or without knowledge

of the eavesdropper’s channel state information (CSI) that

weaken eavesdropper’s reception while guaranteeing autho-

rized reception at prescribed signal-to-interference-plus-noise

(SINR) levels. Simulation results validate the effectiveness

of the waveform and energy design to provide physical-layer

security in SISO wiretap channels. It is interesting to point

out that the design formulation described above is similar

to cognitive radio (CR) application problems. Protecting

primary users from being interfered by secondary users [26]-

[31] parallels the problem of preventing eavesdroppers from

overhearing.

2. SYSTEM MODEL

We consider a wireless transmission to an intended receiver in

the presence of an eavesdropper. For convenience, we follow

the common -whimsical- language in the field and name the

transmitter, intended receiver, and eavesdropper, Alice, Bob,

and Eve, respectively.

Alice will be attempting to transmit confidential messages

to Bob securely with the aid of an appropriately crafted wave-

form. The transmitted signal is

u(t) =
∞∑

n=0

√
Eb(n)s(t− nT )ej2πfct (1)

where fc is the carrier frequency, b(n) ∈ {±1}, n = 1, 2, . . .,
is the nth transmitted information bit, E > 0 represents trans-
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mitted energy per bit with bit period T , and s(t) is the unit-

energy (
∫ T

0
|s(t)|2dt = 1) complex continuous waveform of

the form

s(t) =

L−1∑
l=0

s(l)ψ(t− lTc) (2)

where s(l) ∈ C, l = 0, 1, . . . , L− 1, are to be designed/opti-

mized and ψ(t) is the continuous pulse shaper function with

duration Tc = T/L assumed to be given and fixed (for exam-

ple, ideal square pulse, raised cosine, or otherwise).

The transmitted signal is modeled to propagate to Bob

and Eve over SISO multipath Rayleigh fading channels and

experience additive white Gaussian noise (AWGN) and in-

terference -potentially- from other concurrent transmissions.

After carrier demodulation and ψ(·)-pulse matched filtering

over a presumed multipath extended data bit period of LM =
L+M − 1 pulses where M is the number of resolvable mul-

tipaths1, the data vector yb/e(n) ∈ C
LM received by Bob

(subscript b) or Eve (subscript e) takes the following general

form

yb/e(n) =
√
Eb(n)Hb/es+ib/e+zb/e+nb/e, n = 1, 2, . . . ,

(3)
where Hb/e ∈ C

LM×L is the multipath channel matrix be-

tween Alice and Bob/Eve

Hb/e �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hb/e,1 0 . . . 0 0

hb/e,2 hb/e,1 . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

hb/e,M hb/e,M−1 0 0

0 hb/e,M 0 0

.

.

.
.
.
.

.

.

.
.
.
.

0 0 . . . hb/e,M hb/e,M−1

0 0 . . . 0 hb/e,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

with entries hb/e,m ∈ C, m = 1, . . . ,M , considered as com-

plex Gaussian random variables to model fading phenom-

ena, ib/e ∈ C
LM denotes multipath induced inter-symbol-

interference (ISI), zb/e ∈ C
LM represents comprehensively

interference to Bob/Eve from other potential concurrent trans-

mitters, and nb/e is a zero-mean additive white Gaussian

noise (AWGN) vector with autocorrelation matrix σ2
b/eILM

.

Since the effect of ISI is, arguably, negligible for applications

of interest where the number of resolvable multipaths M is

much less than the number of pulses L, for mathematical and

notational convenience we will not consider the ISI terms in

our theoretical developments that follow2. Thus, Bob/Eve’s

received signal in (3) is simplified/approximated by

yb/e(n) =
√
Eb(n)Hb/es+zb/e+nb/e, n = 1, 2, . . . . (5)

Information bit detection at Bob is carried out optimally

in second-order statistics terms via linear maximum SINR fil-

tering (or, equivalently, minimum mean square error filtering)

1Without loss of generality and for simplicity in notation, we assume the

multipath channels Alice-to-Bob and Alice-to-Eve to have the same number

of resolvable paths.
2However, naturally, ISI will be considered and accounted for in our sim-

ulation studies.

as follows

b̂b(n) = sgn
{
Re{wH

maxSINR,byb(n)}
}
, n = 1, 2, . . . , (6)

where wmaxSINR,b = cR−1
b Hbs ∈ C

LM , c > 0, is the

maximum SINR filter and Rb � E{(zb +nb)(zb +nb)
H} =

E{zbzHb } + σ2
b ILM

� 0 is the autocorrelation matrix of

the combined total additive channel disturbance. The output

SINR of wmaxSINR,b can be calculated to be

SINRb �
E{|wH

maxSINR,b(
√
EbHbs)|2}

E

{
|wH

maxSINR,b(zb + nb)|2
}

= EsHHH
b R−1

b Hbs = EsHQbs (7)

where we define Qb � HH
b R−1

b Hb, Qb � 0.

We consider as a “worst-case” to Alice and Bob the sce-

nario under which Eve has perfect knowledge of the multipath

channel coefficients [he,1, . . . , he,M ] between Alice and Eve,

as well as of the waveform s used by Alice. With this informa-

tion, Eve attempts to extract/retrieve message bits via her own

linear maximum SINR filter wmaxSINR,e = cR−1
e Hes ∈

C
LM , c > 0, Re � E{zezHe } + σ2

eILM
� 0. The output

SINR of the filter wmaxSINR,e is given by

SINRe �
E{|wH

maxSINR,e(
√
EbHes)|2}

E
{|wH

maxSINR(ze + ne))|2
}

= EsHHH
e R−1

e Hes = EsHQes (8)

where we define Qe � HH
e R−1

e He, Qe � 0.

From an information theoretic perspective, as long as

SINRb > SINRe there exists in theory a sequence of coding

schemes in increasing block-length such that, by adjusting

the transmitting energy appropriately, only Bob can perfectly

decode and obtain the message from Alice while Eve fails.

In a practical realistic secure wireless transmission applica-

tion, we wish that Bob can receive Alice’s signal at a desired

SINR level that corresponds to an acceptable bit-error-rate

(BER), while Eve can only have far, far inferior SINR and

BER reception performance. In the next section, we attempt

to lay the foundation for such a development utilizing Alice’s

transmit waveform vector s and transmit energy E > 0 as

security design parameters.

3. SECURE WAVEFORM DESIGN

3.1. Known Eavesdropper Channel

We first consider the scenario under which Alice/Bob know

Eve’s channel He and disturbance autocorrelation matrix Re.

Our objective, in this case, is to find the transmission bit en-

ergy E and the complex-valued normalized waveform s used

by Alice that minimize SINRe under the constraint that Bob

achieves its pre-determined SINR requirement γ. I.e., we

would like to identify the optimal pair

(E, s)opt = arg min
E>0, s∈CL

EsHQes (9)

s. t. EsHQbs ≥ γ , (10)

sHs = 1 , (11)

E ≤ Emax , (12)
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where Emax denotes the maximum available/allowable bit

energy for the transmitter.

The constrained optimization problem (9)-(12) is non-

convex. It is easy to verify that (10) always holds with

equality at an optimal point. Therefore, for any given s, the

optimal transmit energy can be calculated at

E = γ/(sHQbs). (13)

By applying (13) to (9)-(12), the objective function can be

reformulated as having only s to be optimized,

sopt = arg min
s∈CL

sHQes

sHQbs
(14)

s. t. sHQbs ≥ γ

Emax
, (15)

sHs = 1 . (16)

Now, our problem is to find a normalized waveform vector s

to minimize the SINR ratio (generalized Rayleigh quotient)
SINRe

SINRb

= sHQes

sHQbs
between Eve and Bob under constraint (15).

It is clear that constraint (15) may be satisfied and the opti-

mization problem is feasible/solvable, only if the maximum

eigenvalue of Qb is no less than γ/Emax. If we ignore con-

straint (15) for a moment, then the waveform to minimize

the SINR ratio is the familiar generalized eigenvector solu-

tion given by the following proposition.

Proposition 1: Let p1,p2, . . . ,pL be the (normalized)

generalized eigenvectors of matrices (Qe,Qb) with corre-

sponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL, i.e. Qepi =
λiQbpi, i = 1, . . . , L. The normalized waveform to mini-

mize the generalized Rayleigh quotient in (14) is the general-

ized eigenvector

s = pL (17)

with corresponding smallest eigenvalue (and attained mini-

mum quotient/ratio) λL. �

The eigen-design waveform in (17) is the optimal solution

with Alice transmit energy E = γ/pH
LQbpL, if s = pL hap-

pens to satisfy (15) which is a common case. If, however, (15)

is not satisfied, we have to return to problem (9)-(12) and ex-

amine its Karush-Kuhn-Tucker (KKT) conditions3. The find-

ings are summarized in the following proposition whose proof

is omitted due to space limitation.

Proposition 2: Consider the solvable (maximum eigen-

value of Qb no less than γ/Emax) optimization problem (14)-

(16) and assume that solution (17) does not satisfy constraint

(15). Then, the following KKT conditions are necessary for

an s to be optimal

(Qe + μI)s = βQbs, β > 0, μ > 0, (18)

sHQbs =
γ

Emax

, (19)

sHs = 1 . (20)

�

3The strong Lagrangian duality of (9)-(12) was proven in [32].

While, unfortunately, we cannot have closed-form ex-

pressions for s from the above KKT conditions, we can

pursue a numerical solution easily. Condition (18) indicates

that the optimal s is a generalized eigenvector of the ma-

trices (Qe + μI,Qb). For any given value of μ ≥ 0, let

qL(μ) denote the generalized eigenvector of (Qe + μI,Qb)

that has minimum eigenvalue β(μ). We know that qH
L (μ =

0)QbqL(μ = 0) < γ/Emax. We can easily verify that

qH
L (μ)QbqL(μ) is strictly monotonically increasing in μ ∈

[0,∞). Based on this property, we propose to solve the KKT

necessary conditions (18)-(20) by numerically increasing the

searching parameter μ > 0 from zero to a value μopt such that

|qH
L (μopt)QbqL(μ

opt) − γ
Emax

| < ε where ε > 0 is a small

positive value serving as stopping threshold. The resulting

μopt, β(μopt), and sopt = qL(μ
opt), values uniquely satisfy

the necessary conditions (18)-(20), and give the globally op-

timal solution. While the optimization problem can also be

solved by semidefinite relaxation (SDR) [33], our proposed

generalized eigen-decomposition based algorithm is direct in

nature, easy to implement (straight in the complex domain),

and faster.

3.2. Unknown Eavesdropper Channel

In many applications it is impractical to assume that Al-

ice/Bob may have (continuously updated) information about

Eve’s channel and disturbance autocorrelation matrix Re.

Therefore, the waveform design solution of the previous sec-

tion cannot be adopted due to lack of access to Eve’s SINR.

By common intuition, low-power Alice-to-Bob transmis-

sion (“whispering”) improves security by making signal in-

terception by Eve more difficult. Alice, then, needs to use a

waveform s that minimizes the transmitting energy while Bob

maintains a given required QoS level

(E, s)opt = arg min
E>0, s∈CL

E (21)

s. t. EsHQbs ≥ γ , (22)

sHs = 1 , (23)

E ≤ Emax . (24)

The optimal design to minimize the transmit energy is given

by the following proposition.

Proposition 3: Let q1,q2, . . . ,qL be the eigenvectors of

Qb with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λL.

The waveform s to minimize transmitting energy is

s = q1

and the minimum transmitting energy is

Emin = γ/λ1. �

If Emin < Emax, Alice-to-Bob transmission can be es-

tablished with waveform s = q1 and transmitting energy

Emin = γ/λ1.

To further increase security by degrading Eve’s SINR, we

adopt an artificial-noise (AN)-aided approach. The maximum

(by the waveform design s = q1) remaining transmit energy
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budget EAN = Emax −Emin will be utilized to insert artifi-

cially generated noise to interfere to signal reception by Eve

only. Specifically, Alice shall transmit during the nth symbol

period her data signal
√
Eb(n)s along with artificially gener-

ated noise w(n) of mean E{w} = 0, autocorrelation matrix

Rw � E{wwH}, and energy EAN = Tr{Rw}. Bob’s re-

ceived signal vector can be expressed as

yb(n) =
√
Eb(n)Hbs+Hbw(n) + zb + nb, n = 1, 2, . . . .

With maximum SINR filtering by wmaxSINR,b = c(Rb +

HbRwH
H
b )−1Hbs, c > 0, Rb � E{(zb + nb)(zb + nb)

H},

the output SINR is maximized to

SINRb = EsHHH
b (Rb +HbRwH

H
b )−1Hbs. (25)

By Woodbury’s matrix inversion lemma,

(Rb +HbRwH
H
b )−1 = R−1

b −
R−1

b HbRw(I+HH
b R−1

b HbRw)
−1HH

b R−1
b

and (25) can be rewritten as

SINRb = EsHHH
b R−1

b Hbs−
EsHHH

b R−1
b HbRw(I+HH

b R−1
b HbRw)

−1HH
b R−1

b Hbs (26)

where the first term is Bob’s SINR without AN (see (7)) and

the second term quantifies Bob’s SINR degradation due to

AN. To make the second term (degradation) in (26) zero, it

suffices to design AN with autocorrelation matrix Rw such

that

sHHH
b R−1

b HbRw = sHQbRw = 0T (27)

where 0 is the L× 1 all zero vector.

It is easy to see that, to achieve equality in (27) with wave-

form design s = q1, we should have Rw = WΣWH where

W � [q2, . . . ,qL], L ≥ 2, Σ ∈ R
(L−1)×(L−1) is a diagonal

matrix, and EAN = Tr{Σ}. This means that AN w(n) must

be chosen as a linear combination of the L − 1 eigenvectors

q2, . . . ,qL. With unknown eavesdropper’s CSI, the best op-

tion available to Alice is to isotropically/uniformly spread the

available transmit energy budget EAN = Emax−Emin along

the L− 1 eigen dimensions orthogonal to s = q1 to interfere

with the eavesdroppers’ receiver. Therefore, AN is generated

with the following autocorrelation matrix

Rw =
Emax − Emin

L− 1
WWH .

4. SIMULATION EXPERIMENTS AND DISCUSSION

In this section, we present simulation results to validate

the impact of the proposed waveform design to SISO se-

crecy. We let Alice attempt to establish a secure transmission

to Bob using a waveform of length L = 8 in the presence

of eavesdropper Eve. The channel is assumed to be mul-

tipath Rayleigh fading with M = 3 resolvable paths with

additive interference from concurrent users and white Gaus-

sian noise. The available transmit energy is assumed to be

Emax = 100. Three schemes are examined under varying

assumptions about Eve’s CSI: i) Generalized eigenwaveform
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Bob γ (Emax = 100, L = 8).
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of Section 3.1 (known CSI); ii) artificial noise (AN) injec-

tion of Section 3.2 (no CSI); and iii) as a reference line, the

obvious engineering approach of minimum-required-energy

transmission. The average pre-detection SINR of Eve over

106 channel realizations is plotted in Fig. 1 as a function

of Bob’s pre-detection SINR requirement γ, which is set to

range from 0dB to 10dB. It can be observed from Fig. 1 that,

for the case of known CSI, the generalized eigenwaveform

design keeps the SINR of Eve at lowest values and provides

effectively secure transmission to Bob. For unknown CSI,

the AN-aided method degrades Eve’s SINR by about 2dB

over the minimum-required-energy approach and maintains a

significant Bob-to-Eve SINR margin of 6dB to 8dB.

To quantify the practical effectiveness of the proposed

transmission scheme with secure waveform design, we

“translate” Fig. 1 to bit-error-rate (BER) of Bob and Eve

for both uncoded and coded transmissions. An (1024, 512)

low-density parity-check (LDPC) code with belief-propaga-

tion decoding is adopted for the simulation experiments. Bob

and Eve know exactly the coding scheme. The BER perfor-

mance curves are shown in Fig. 2. While Bob can achieve

(by all practical measures) errorless transmission with LDPC

coding at 2 dB SINR, Eve has error rate barely less than 1/2
even when Alice has no knowledge of Eve’s CSI (Eve, AN

coded curve). The wireless link is, arguably, as secure as ever

intended.
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