
ADAPTIVE REDUCED-RANK MBER LINEAR RECEIVE PROCESSING USING JOINT
INTERPOLATION, SWITCHED DECIMATION AND FILTERING FOR LARGE MULTIUSER

MIMO SYSTEMS

Yunlong Cai #1 and Rodrigo C. de Lamare ∗2

# Department of ISEE, Zhejiang University, Hangzhou 310027, China
∗ Department of Electronics, University of York, York, UK, YO10 5DD

1 ylcai@zju.edu.cn, 2 rcdl500@ohm.york.ac.uk

ABSTRACT

In this work, we propose a novel adaptive reduced-rank strategy
based on joint interpolation, decimation and filtering (JIDF) for large
multiuser multiple-input multiple-output (MIMO) systems. In this
scheme, a reduced-rank framework is proposed for linear receive
processing and multiuser interference suppression according to the
minimization of the bit error rate (BER) cost function. We present
a structure with multiple processing branches that performs dimen-
sionality reduction, where each branch contains a group of jointly
optimized interpolation and decimation units, followed by a linear
receive filter. We then develop stochastic gradient (SG) algorithms to
compute the parameters of the interpolation and receive filters along
with a low-complexity decimation technique. Simulation results are
presented for time-varying environments and show that the proposed
MBER-JIDF receive processing strategy and algorithms achieve a
superior performance to existing methods at a reduced complexity.

Index Terms— Adaptive filtering, minimum-BER, reduced-
rank techniques, massive MIMO, stochastic gradient algorithms.

1. INTRODUCTION

Large MIMO systems have received significant attention in the re-
cent years since they can substantially increase the system capacity
and improve the quality and reliability of wireless links [1]. Differ-
ent configurations have been investigated for large MIMO systems,
such as distributed and centralized MIMO schemes. Key applica-
tions of these systems include wireless cellular, local area [2, 3, 4]
and multi-beam satellite networks [5]. The problem of detecting a
desired user in a large multiuser MIMO system presents many sig-
nal processing challenges including the need for algorithms with the
ability to process large-dimensional received data, fast and accurate
adjustment of parameters, scalable computational complexity and
the development of cost-effective interference mitigation schemes.

In this context, reduced-rank signal processing is a key tool for
large systems which can provide faster training, a better tracking per-
formance and an increased robustness against interference as com-
pared to standard methods. A number of reduced-rank techniques
have been developed to design the dimensionality reduction matrix
and the reduced-rank receive filter [6]-[15]. Among the first schemes
are the eigendecomposition-based (EIG) algorithms [6], [7] and the
multistage Wiener filter (MWF) investigated in [8]-[10]. EIG and
MWF have faster convergence speed compared to the full rank adap-
tive algorithms with a much smaller filter size, but their computa-
tional complexity is high. A strategy based on the joint and iterative
optimization (JIO) of a subspace projection matrix and a reduced-
rank filter has been reported in [12, 13, 14, 15].

However, most of the contributions to date are either based on
the minimization of the mean square error (MSE) and/or the min-
imum variance criteria [6]-[15], which are not the most appropri-

ate metric from a performance viewpoint in digital communications.
Design approaches that can minimize the bit error rate (BER) have
been reported in [16, 17, 18, 19, 20] and are termed adaptive MBER
techniques. The work in [18] appears to be the first approach to com-
bine a reduced-rank algorithm with the BER criterion. However, the
scheme is a hybrid between an EIG or an MWF approach, and a
BER scheme in which only the reduced-rank filter is adjusted in an
MBER fashion. Moreover, the existing works on MBER techniques
have not addressed the key problem of performance degradation ex-
perienced when the filters become larger and their performance con-
verges gradually to MSE-based techniques.

In this work, we propose an adaptive reduced-rank linear receive
processing strategy based on joint interpolation, decimation and fil-
tering (JIDF) for large multiuser MIMO systems. The proposed
scheme employs a multiple-branch framework which adaptively per-
forms dimensionality reduction using a set of jointly optimized in-
terpolation and decimation units, followed by receive filtering ac-
cording to the BER cost function. The dimensionality reduction is
optimized at each time instant by selection of the interpolation filter
and the decimation pattern with the best performance. After dimen-
sionality reduction, a linear receive filter with reduced dimension de-
signed using the BER criterion is applied to suppress the multiuser
interference and estimate the data symbols. We devise stochastic
gradient (SG) algorithms to compute the parameters of the interpo-
lation and receive filters along with a low-complexity decimation
technique. A unique feature of our scheme is that all component fil-
ters have a small number of parameters and can take full advantage
of the MBER adaptation. Simulation results show that the proposed
MBER-JIDF receive processing strategy and algorithms have a su-
perior performance to existing techniques at a reduced complexity.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider the uplink of an uncoded synchronous multiuser
MIMO system with K users and one base station (BS) [21]-[24],
where each user is equipped with NU antennas and the BS is
equipped with M uncorrelated receive antennas and KNU < M .
We assume that the channel is a MIMO time-varying flat fading
channel. The M -dimensional received vector is given by

r(i) =
K∑
k=1

AkHk(i)bk(i) + n(i), (1)

where bk(i) = [bk,1(i) . . . bk,n(i) . . . bk,NU (i)]T is a NU × 1 sym-
bol vector of user k corresponding to the i-th time instant, n =
1, . . . , NU , and the amplitude of user k is Ak, k = 1, . . . ,K. The
M × NU matrix Hk(i) is the channel matrix of user k, which is
given by

Hk(i) = [hk,1(i) . . .hk,f (i) . . .hk,M (i)]T , (2)
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where the NU × 1 channel vectors hk,f (i), for f = 1, . . . ,M ,
consist of independent and identically distributed complex Gaussian
variables with zero mean and unit variance, n(i) = [n1(i) . . . nM (i)]T

is the complex Gaussian noise vector with zero mean andE[n(i)nH(i)] =
σ2I, where σ2 is the noise variance, (.)T and (.)H denote transpose
and Hermitian transpose, respectively.

In the following, we explain the design of reduced-rank receive
processing schemes which minimize the BER. In a reduced-rank al-
gorithm, an M × D subspace projection matrix SD is applied to
the received data to extract the most important information of the
data by performing dimensionality reduction, where 1 ≤ D ≤ M .
A D × 1 projected received vector is obtained as r̄(i) = SHDr(i),
where it is the input to a D × 1 filter w̄. The filter output is given
by x̄k,n(i) = w̄H r̄(i) = w̄HSHDr(i). Assuming that we use binary
signalling, the estimated symbol of user k is given by b̂k,n(i) =
sign{ℜ[w̄H r̄(i)]}, where the operator ℜ[.] retains the real part of
the argument and sign{.} is the signum function. The probability of
error for user k is given by

Pe =

∫ 0

−∞
f(x̃k,n)dx̃k,n = Q

(
sign{bk,n(i)}ℜ[x̄k,n(i)]
ρ(w̄HSHDSDw̄)

1
2

)
, (3)

where x̃k,n = sign{bk,n(i)}ℜ[x̄k,n(i)] denotes a random variable,
f(x̃k,n) is the single point kernel density estimate [16] which is
given by

f(x̃k,n) =
1

ρ
√

2πw̄HSHDSDw̄
exp

(
−(x̃k,n − sign{bk,n}ℜ[x̄k,n])2

2w̄HSHDSDw̄ρ2

)
,

(4)

where ρ is the radius parameter of the kernel density estimate, Q(.)
is the Gaussian error function. The problem we are interested in
solving is how to devise a cost-effective algorithm to adjust the pa-
rameters of SD and w̄ based on minimizing the probability of error
with reduced length component filters.

3. PROPOSED MBER-JIDF REDUCED-RANK LINEAR
RECEIVE PROCESSING SCHEME

In this section, we detail the proposed MBER reduced-rank linear
receive processing scheme based on joint interpolation, decimation
and filtering, which comes from two observations. The first is that
rank reduction can be performed by reconstructing new samples with
interpolators and eliminating (decimating) samples that are not use-
ful in the filtering process [14]. The second comes from the structure
of the dimensionality reduction matrix, whose columns are a set of
vectors formed by the interpolators and decimators.

3.1. Overview of the MBER-JIDF Scheme

We design the subspace projection matrix SD by considering in-
terpolation and decimation. In this case, the receive filter length is
substantially reduced, which results in significantly reduced compu-
tational complexity and very fast training for large MIMO systems.
The proposed MBER-JIDF scheme for the n-th symbol of the k-th
user is depicted in Fig. 1. The M × 1 received vector r(i) is pro-
cessed by a framework withB branches, where each branch contains
an interpolator and a decimation unit, followed by a reduced-rank
receive filter. In the l-th branch, the received vector is operated by
the interpolator pl(i) = [p1,l(i), . . . , pI,l(i)]

T with filter length I ,
I < M , the output of the interpolator of the l-th branch is expressed
by

r̃l(i) = PH
l (i)r(i) (5)

where the M ×M Toeplitz convolution matrix Pl(i) is given by

Pl(i) =



p1,l(i) 0 . . . 0
... p1,l(i) . . . 0

pI,l(i)
... . . . 0

0 pI,l(i) . . . 0

0 0
. . . 0

...
...

. . .
...

0 0 . . . p1,l(i)


.

In order to facilitate the description of the scheme, we introduce an
alternative way to represent the vector r̃l(i),

r̃l(i) = PHl (i)r(i) = R
′
(i)p∗

l (i) (6)

where the M × I matrix R
′
(i) with the samples of r(i) =

[r0(i), . . . , rM−1(i)]
T has a Hankel structure [26] given by

R
′
(i) =



r0(i) r1(i) . . . rI−1(i)
...

... . . .
...

rM−1(i) rM−I+1(i) . . . rM−1(i)

rM−I+1(i) rM−I+2(i)
. . . 0

...
...

. . .
...

rM−2(i) rM−1(i) 0 0
rM−1(i) 0 0 0


.

The dimensionality reduction is performed by a decimation unit with
D×M decimation matrices Tl that projects r̃l(i) ontoD×1 vectors
r̄l(i) with l = 1, . . . , B, whereD is the rank. TheD×1 vector r̄l(i)
for the l-th branch is given by

r̄l(i) = TlP
H
l (i)︸ ︷︷ ︸

SD,l(i)

r(i) = Tlr̃l(i) = TlR
′
(i)p∗

l (i) (7)

where SD,l(i) denotes the equivalent subspace projection matrix
corresponding to the l-th branch. The output of the reduced-rank
receive filter w̄(i) corresponding to the l-th branch is given by
x̄lk,n(i) = w̄H(i)r̄l(i), which is used in the minimization of the
error probability for branch l. The hard decision for the l-th branch
is given by b̂lk,n(i) = sign{ℜ[w̄H r̄l(i)]}. The proposed scheme
employs B parallel branches of interpolators and decimators. The
optimum branch is selected according to

lopt = arg min
1≤l≤B

P (l)
e , whereP (l)

e = Q

(
sign{bk,n(i)}ℜ[x̄lk,n(i)]
ρ(w̄HSHD,lSD,lw̄)

1
2

)
.

(8)
The output of the scheme is given by b̂fk,n(i) = sign{ℜ[w̄H r̄lopt(i)]}.

3.2. Design of the Decimation Unit

In this work, the elements of the decimation matrix only take the
value 0 or 1. This corresponds to the decimation unit simply keep-
ing or discarding the samples. The optimal decimation scheme ex-
haustively explores all possible patterns which select D samples
out of M samples. In this case, the scheme can be viewed as a
combinatorial problem and the total number of patterns is B =
M(M − 1) . . . (M −D + 1).
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Fig. 1. Structure of the proposed MBER-JIDF scheme

However, the optimal decimation scheme is too complex for
practical use. We introduce a low-complexity suboptimal method
to generate the decimation matrix. It employs a structure formed in
the following way

Tl =
[
tl,1 tl,2 . . . tl,D

]T
where the M × 1 vector tl,d denotes the d-th basis vector of the l-th
decimation unit, d = 1, . . . , D, l = 1, . . . , B, and its structure is
given by

tl,d = [0, . . . , 0︸ ︷︷ ︸
ql,d

, 1, 0, . . . , 0︸ ︷︷ ︸
M−ql,d−1

]T (9)

where ql,d is the number of zeros before the nonzero element. Note
that it is composed of a single 1 and M − 1 0s. We set the value
of ql,d in a deterministic way which can be expressed as ql,d =
⌊M
D
⌋ × (d − 1) + (l − 1). The simulation results will show that

the proposed reduced-rank scheme with the suboptimal decimation
unit design method works very well. In the following section, we
will introduce the proposed adaptive algorithms for the interpolator
filter pl(i) and the reduced-rank receive filter w̄(i).

4. PROPOSED ADAPTIVE ALGORITHMS

In this section, we develop the MBER based adaptive SG algo-
rithms to update the interpolator and the reduced-rank filters for
each branch. We then provide a computational complexity analysis
of the proposed and conventional adaptive reduced-rank algorithms.

4.1. Adaptive MBER-JIDF Algorithms

Firstly, we derive the gradient terms for the reduced-rank filter and
the interpolation vector. By taking the gradient of (8) with respect to
w̄∗ and after further mathematical manipulations we obtain

∂P
(l)
e

∂w̄∗ =

− exp

(
−|ℜ[x̄lk,n(i)]|2

2ρ2w̄HSH
D,l

SD,lw̄

)
sign{bk,n(i)}

2
√
2πρ

×
(

SHD,lr

(w̄HSHD,lSD,lw̄)
1
2

−
ℜ[x̄lk,n(i)]SHD,lSD,lw̄
(w̄HSHD,lSD,lw̄)

3
2

)
.

(10)

To derive the gradient terms for the interpolator pl(i), we need to
express the output of the l-th branch x̄lk,n(i) as a function of pl(i),
which is given by

x̄lk,n(i) = w̄H(i)Tl(i)R
′
(i)p∗

l (i) = pHl (i)u(i) (11)

where u(i) = R
′T (i)TT

l (i)w̄
∗(i) is an I×1 vector. We let u(i) =

[u1(i), . . . , uI(i)]
T and rewrite the error probability cost function

P
(l)
e as follows

P (l)
e = Q

(
sign{bk,n(i)}ℜ[p1,lu1 + p2,lu2 + . . .+ pI,luI ]

ρ
√
g(p1,l, p2,l, . . . , pI,l)

)
(12)

where the function g(p1,l, p2,l, . . . , pI,l) is given by

g(p1,l, p2,l, . . . , pI,l) = w̄1(p1,lp
∗
1,l + . . .+ pϕ1,lp

∗
ϕ1,l)w̄

∗
1

+ w̄2(p1,lp
∗
1,l + . . .+ pϕ2,lp

∗
ϕ2,l)w̄

∗
2 + . . .

+ w̄D(p1,lp
∗
1,l + . . .+ pϕD,lp

∗
ϕD,l)w̄

∗
D

(13)

where ϕd denotes the number of nonzero elements for row d in the
D × I matrix Tl(i)R

′
(i), 1 ≤ d ≤ D, I = ϕ1 ≥ ϕ2 ≥ . . . ≥

ϕD ≥ 1. Note that g(p1,l, p2,l, . . . , pI,l) = w̄HSHD,lSD,lw̄, and
we define w̄ = [w̄1, . . . , w̄D]

T . By taking the gradient with respect
to each element p∗j,l in vector pl(i), j = 1, . . . , I , we obtain

∂P
(l)
e

∂p∗j,l
=

− exp

(
−|ℜ[x̄lk,n(i)]|2

2ρ2g(p1,l,...,pI,l)

)
sign{bk,n(i)}

2
√
2πρ

×
(

uj(i)

g
1
2 (p1,l, . . . , pI,l)

−
ℜ[x̄lk,n](|w̄1|2 + . . .+ |w̄ψj |

2)pj,l

g
3
2 (p1,l, . . . , pI,l)

)
,

(14)

where ψj denotes the number of nonzero elements for column j in
the D × I matrix Tl(i)R

′
(i), 1 ≤ j ≤ I , D = ψ1 ≥ ψ2 ≥ . . . ≥

ψI ≥ 1. We stack the I elements ∂P
(l)
e

∂p∗
j,l

and obtain an I× 1 gradient

vector as vl =
[
∂P

(l)
e

∂p∗
1,l
, ∂P

(l)
e

∂p∗
2,l
, . . . , ∂P

(l)
e

∂p∗
I,l

]T .

The interpolator and the reduced-rank receive filters are jointly
optimized according to the BER criterion. The algorithm has been
devised to start its operation in the training (TR) mode, and then
to switch to the decision-directed (DD) mode. The proposed
SG algorithms are obtained by substituting the gradient terms
(10) and (14) in the expressions w̄(i + 1) = w̄(i) − µw

∂Pe
∂w̄∗

and pl(i + 1) = pl(i) − µpvl [25] subject to the constraint of
w̄H(i)SHD,l(i)SD,l(i)w̄(i) = g(p1,l, p2,l, . . . , pI,l) = 1. At each
time instant, the weights of the two quantities of branch l are updated
in an alternating way by using the following equations

w̄(i+ 1) = w̄(i) + µw

exp

(
−|ℜ[x̄lk,n(i)]|2

2ρ2

)
sign{bk,n(i)}

2
√
2πρ

×
(
SHD,l(i)r(i)−ℜ[x̄lk,n(i)]SHD,l(i)SD,l(i)w̄(i)

)
(15)

pl(i+ 1) = pl(i)− µp ×
[
∂P

(l)
e

∂p∗1,l
,
∂P

(l)
e

∂p∗2,l
, . . . ,

∂P
(l)
e

∂p∗I,l

]T
(16)

where each element in the gradient vector is given by

∂P
(l)
e

∂p∗j,l
=

− exp

(
−|ℜ[x̄lk,n(i)]|2

2ρ2

)
sign{bk,n(i)}

2
√
2πρ

×
(
uj(i)−ℜ[x̄lk,n(i)](|w̄1|2 + . . .+ |w̄ψj |

2)pj,l
)
,

(17)
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where µw and µp are the step-size values. Expressions (15) and (16)
need initial values, w̄(0) and pl(0), and we scale the interpolation
vector by pl ← pl√

w̄HSH
D,l

SD,lw̄
at each iteration. The scaling has

an equivalent performance to using a constrained optimization with
Lagrange multipliers although it is computationally simpler. The
proposed MBER-JIDF algorithm are summarized in Table 1.

Table 1. Proposed adaptive MBER-JIDF algorithm.
1 Set step-size values µw and µSD and the no. of branches B.
2 Initialize w̄(0) and pl(0). Set T1, . . . ,TB .
3 for each time instant i do
4 for l from 1 to B do
5 Update pl(i+ 1) based on Tl and (16).
6 Scale the vector pl using pl ← pl√

w̄HSH
D,l

SD,lw̄
.

6 end
7 Select the optimal branch based on (8).

Generate the estimated symbol.
8 Update w̄(i+ 1) based on the selected branch and (15)

4.2. Computational Complexity

In Table 2, we show the number of additions and multiplications of
the proposed MBER-JIDF algorithm, the existing adaptive reduced-
rank algorithms, the adaptive least-mean square (LMS) [25] and the
SG full-rank algorithm based on the BER criterion [16]. In the case
of large MIMO systems, the parametersD, I andB are chosen much
smaller than M , which results in a substantial complexity saving. In
particular, for a configuration withM = 40, I = D = 8 andB = 4,
the numbers of multiplications and additions for the proposed al-
gorithm are upper bounded by 1825 and 1595, respectively. For
the MWF-MBER algorithm they are 15594 and 11857, respectively.
Compared to the existing reduced-rank algorithms, the MBER-JIDF
algorithm reduces the computational complexity significantly.

Table 2. Computational complexity of Algorithms.
Number of operations per symbol

Algorithm Multiplications Additions
Full-Rank-LMS 2M + 1 2M

Full-Rank-MBER 4M + 1 4M − 1
EIG [7] O(M3) O(M3)

MBER-MWF [18] (D + 1)M2 (D − 1)M2

+(3D + 1)M +(2D − 1)M
+M + 3D + 10 +M + 2D + 1

MBER-JIDF MDB +DB MDB + IB
+7IB + 4D + 1 −B + 4D − 1
+
∑
l

∑
j ψj +

∑
l

∑
j ψj

5. SIMULATIONS

In this section, we evaluate the performance of the proposed
MBER-JIDF reduced-rank algorithm and compare it with exist-
ing full-rank and reduced-rank algorithms. Monte-carlo simu-
lations are conducted to verify the effectiveness of the MBER-
JIDF adaptive reduced-rank SG algorithms. The number of re-
ceive antennas at the BS is M = 40. The number of anten-
nas per user is NU = 2. The coefficients of the channel ma-
trix Hk(i) are computed according to Clarke’s model [27]. We
have optimized the step sizes of each branch of the MBER-JIDF

adaptive reduced-rank SG algorithms with the following rules,

µw/p(i+1) =

[
δ1µw/p(i) + δ2 ×Q

(
sign{b̂lk,n(i)}ℜ[x̄lk,n(i)]

ρ

)]µ+

µ−
,

where [.]µ
+

µ− denotes the truncation to the limits of a range. We tuned
δ1 = 0.99, δ2 = 1 × 10−4, µ+ = 1 × 10−2 and µ− = 1 × 10−5

and set ρ = 2σ [16]. The step sizes for LMS adaptive full-rank, SG
adaptive MBER full-rank and the other reduced-rank techniques are
0.085, 0.05 and 0.035, respectively. The initial full-rank, reduced-
rank and interpolation filters are [1, 0, . . . , 0]T . The algorithms
process 200 symbols in TR and 1000 symbols in DD.

Fig.2 (a) shows the BER performance of the desired user ver-
sus the number of received symbols for the proposed MBER-JIDF
scheme and the conventional full rank and reduced-rank algorithms.
We set the rank D = 8, I = 8, K = 4, SNR = 15dB and fdT =
1 × 10−5. We can see that the proposed MBER-JIDF reduced-
rank algorithms converge much faster than the conventional full rank
and reduced-rank algorithms. Fig.2 (b) illustrates the steady-state
BER performance of the desired user versus the number of users K.
We can see that the best performance is achieved by the proposed
MBER-JIDF algorithms followed by the MWF-MBER algorithm,
the full-rank MBER algorithm, the full-rank LMS algorithm and the
eigen-decomposition-based algorithms. In particular, the MBER-
JIDF algorithm using B = 4 can accommodate up to four more
users in comparison with the MWF-MBER algorithm [18], at the
BER level of 2× 10−2.
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Fig. 2. BER performance versus (a) number of received symbols,
K= 4, (b) number of users. Parameters: D = I = 8, SNR= 15dB,
and NU = 2.

6. CONCLUSION

In this paper, we have proposed an adaptive reduced-rank linear re-
ceive processing scheme and MBER algorithms for interference sup-
pression in large multiuser MIMO systems. For each branch, we
designed a group of jointly optimized interpolation and decimation
units, followed by linear receive filtering according to the minimiza-
tion of the BER cost function. The final output is switched to the
branch with the best performance based on the minimum error prob-
ability. We have developed SG based algorithms for their adaptive
implementation. The results have shown that the proposed scheme
significantly outperforms existing algorithms and supports systems
with higher loads. Future work will consider non-linear detectors,
higher order modulation and other MIMO configurations.
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