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ABSTRACT

In this paper, we propose a tree-search based approach to
detecting symbols transmitted over a sparse intersymbol inter-
ference channel. The proposed method uses a novel multiple-
tree structure that exploits the channel sparsity to reduce com-
putational complexity. By using parallel tree searches to per-
form data detection, the algorithm avoids the redundant like-
lihood computations introduced by inactive taps in the sparse
channel impulse response. Simulation results show that, for
moderate to high SNR, the multiple tree-search algorithm can
reduce complexity by a factor of approximately 30 relative to
the conventional Viterbi algorithm and by a factor of nearly 4
relative to multi-trellis methods.

Index Terms— Sequential detection, sparse channels,
tree search, Viterbi algorithm, multi-trellis.

1. INTRODUCTION

Sparse intersymbol interference (ISI) channels are encoun-
tered in a wide range of applications, such as underwater
acoustic communications [1] and high definition television
(HDTV) systems [2]. The channels in these applications have
a very large memory but only a small number of non-zero
taps. The large memory of these channels often renders con-
ventional maximum likelihood (ML) detection approaches,
such as the Viterbi Algorithm (VA), prohibitively complex.

Numerous methods have been proposed to reduce the
computational burden of data detection be exploiting channel
sparsity. In [3], it was shown that only a small number of the
filter coefficients in the decision feedback equalizer (DFE)
are significant for sparse ISI channels, and a method for pre-
dicting the significant taps was proposed. Algorithms to find
the locations of such coefficients were well studied in [4, 5].
A parallel trellis Viterbi algorithm (PTVA) was proposed
in [6], but it is applicable only to zero padding channels, i.e.,
channels that have an equal number of zeros between active
(non-zero) channel taps. In [7], a multi-trellis Viterbi algo-
rithm (MVA) was designed for general sparse channels using
multiple irregular trellises. It was observed in [6] and [7]
that when using the VA for a sparse channel, many paths in
the trellis have the same probability metric due to the large
number of non-active channel taps. Both the PTVA and MVA

were proposed to approximate the ML solution and reduce
complexity by avoiding redundant path metric computations,
but their complexity still grows exponentially with the num-
ber of active channel taps.

In this paper, we propose a computationally efficient tree-
search based sequential detection method called the multiple
tree algorithm (MTA). The proposed technique makes use of
the stack algorithm (SA) for tree search, which was orig-
inally developed for decoding convolutional and tree codes
[8]. Similar to the PTVA and MVA, the proposed algorithm
reduces complexity by eliminating repeated metric compu-
tations within the detection process. However, it also takes
advantage of the efficiency of the SA at moderate-to-high
SNR to further reduce the computational load for long sparse
channels with a large number of active taps. In contrast to
the MVA, which uses a multi-trellis structure, the proposed
method employs multiple trees, each with a reduced num-
ber of branches relative to a full search tree and each pro-
ducing estimates of a subset of the transmitted bits. Each
subtree takes a subset of the received sequence as input and
obtains soft estimates of the bits that are not available to it
from other subtrees. By eliminating paths with the same met-
ric, the MTA significantly improves sequential detection effi-
ciency for sparse ISI channels.

2. SYSTEM MODEL AND BACKGROUND

2.1. Sparse ISI channel model

We consider a discrete-time, baseband equivalent communi-
cation system. A length-N sequence of information symbols
XN

1 = {x1, . . . , xk, . . . , xN} is passed over a length-Lh

sparse ISI channel h with additive white Gaussian noise
(AWGN) wk ∼ N (0, σ2). The channel output sequence
YN

1 = {y1, . . . , yk, . . . , yN} is then processed by a detector
to generate symbol estimates X̂N

1 = {x̂1, . . . , x̂k, . . . , x̂N}.
We assume that the receiver knows the sparse channel, h,

h = [h0, 0, . . . , 0, h1, 0, . . . , 0, hLa−1]
T . (1)

The channel has only La active (non-zero) taps, ha =
[h0, h1, . . . , hLa−1]

T , where La � Lh. Let pi denote the
position of the i-th active channel tap. The received signal at
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time instant k can be expressed as

yk =

La−1∑
i=0

hixk−pi
+ wk = hT

aX
k−pLa−1

k−p0
+ wk, (2)

where X
k−pLa−1

k−p0
=
[
xk−p0

xk−p1
. . . xk−pLa−1

]
are the in-

put bits on which yk depends. For simplicity, we assume the
input sequence XN

1 is BPSK modulated, i.e., xk ∈ {+1,−1}.
It is straightforward to extend the proposed algorithm to M-
ary modulation schemes.

2.2. Stack algorithm for tree search

The SA is a best-first tree-search technique that extends the
single most likely path at each iteration [8]. When the tree
represents the space spanned by a sequence of transmitted
bits, the SA can be used to approximate the ML solution to
sequence detection. In such applications, each path in the tree
represents a possible realization of the transmitted sequence.
Each path has an associated metric, which expresses the like-
lihood that the corresponding bit sequence was transmitted,
conditioned on the observations. A set of possible paths and
their metrics are stored in a stack (or list) in order of decreas-
ing metric value. At each time step, the SA extends the path
with the highest likelihood, e.g. the top path in the stack. The
algorithm terminates when the top path in the stack reaches a
leaf of the tree, or equivalently when the top path represents a
full block of transmitted bits.

When the SA is used to detect data transmitted over an ISI
channel, the metric for a given path is governed by the sym-
bol sequence associated with that path, the channel impulse
response, and the output observations. When the ISI channel
has many non-active taps, multiple paths in the tree will have
the same metrics, resulting in a large number of redundant
calculations. In Section 3, we propose a novel sequential de-
tection method wherein we replace the single search tree with
multiple parallel trees to avoid repeated metric computations.

3. STACK-BASED MULTIPLE TREE ALGORITHM

Rather than searching a single tree, the MTA uses mul-
tiple parallel subtrees designed to avoid redundant met-
ric computations. For example, given a simple channel
h = [h0, 0, h1], two subtrees can be constructed. One es-
timates the transmitted sequence {x1, x3, . . .}, and the other
estimates {x2, x4, . . .}. The construction of the subtrees is
determined by the positions of the active channel taps and is
designed such that no two paths have the same metric.

Let J denote the number of parallel subtrees. The chan-
nel output sequence YN

1 is divided into J subsets {YNj

j },
j = 1, . . . , J , where Y

Nj

j = {yj , yj+J , . . . , yN−J+j} is the

input to the j-th subtree. X
Nj

j = {xj , xj+J , . . . , xN−J+j}
is the subset of the transmitted sequence estimated in the j-
th subtree and is referred to as the state of subtree j. When

the MTA is used, the channel output yk may be fed to a sub-
tree whose state does not include all the symbols xk−pi

, i =
0, . . . , La − 1, on which yk is dependent. We obtain soft
estimates of such symbols from the subtrees in which they
are contained and incorporate the soft estimates into the path
metric as needed. The path metric for the MTA is derived in
Section 3.1, and the selection of the number of subtrees J is
described in Section 3.2. A step-by-step description of the
MTA is given in Section 3.3.

3.1. Derivation of the path metric of the MTA

The SA governs the order in which the paths of each subtree
are explored. The sequence represented by each path is a non-
contiguous subset of the transmitted sequence. As a result, the
conventional sequential detection path metric must be modi-
fied to incorporate soft estimates of the symbols not contained
in each subtree state. Let Xnj

j denote the first 1+ (nj − j)/J
symbols estimated by the j-th subtree. In subtree j, the path
metric expresses the likelihood that the information sequence
X

nj

j is transmitted given knowledge of the full received se-

quence Y
Nj

j ,

P (X
nj

j |Y
Nj

j ) =
P (Y

Nj

j |X
nj

j )P (X
nj

j )

P (Y
Nj

j )
. (3)

In order to develop a closed-form expression for the path
metric that can be computed with moderate complexity, we
make two assumptions: 1) The received sequence beyond the
path of interest, YNj

nj+J , when conditioned on X
nj

j , is inde-
pendent of the previous received sequence Y

nj

j . 2) The se-

quence Y
Nj

nj+J is independent of the first 1 + (nj − j)/J

symbols X
nj

j that subtree j estimates. Eliminating P (YNj

j )
since it is equal for all paths, we can simplify the expression
in (3) and write the path metric for the input sequence Xnj

j as

m(X
nj

j ) = P (Y
Nj

j |X
nj

j )P (X
nj

j ) (4)

≈ P (X
nj

j )P (Y
nj

j |X
nj

j )P (Y
Nj

nj+J |X
nj

j )

≈ P (X
nj

j )P (Y
nj

j |X
nj

j )P (Y
Nj

nj+J),

where the second and third lines in (4) incorporate assump-
tions 1 and 2, respectively. Assuming the information sym-
bols are independent and equally likely to be ±1, the prior
probability of the transmitted symbols is given by P (Xnj

j ) =

( 12 )
1+(nj−j)/J .
Since the SA extends only the path with the largest metric

at each stage, the paths stored in the stack will generally be of
varying lengths. P (YNj

nj+J), which serves as a bias term that
compensates for varying path length, can be obtained by aver-
aging over all possible sequences XNj

nj+J . Because this com-
putation is prohibitively complex to use in the path metric, we
assume the future received symbols yk, k = nj + J, . . . , Nj ,
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are independent of each other, and we approximate the bias
term by a product of Gaussian terms as in [9],

P (Y
Nj

nj+J) ≈
Nj∏

k=nj+J

P (yk) ≈
Nj∏

k=nj+J

1√
2πσ2

0

exp

(
− y2k
2σ2

0

)
,

(5)
where σ2

0 = σ2 + hTh = σ2 + hT
a ha.

The likelihood term P (Y
nj

j |X
nj

j ) is given by the cascade
of the conditional probabilities of each yk ∈ Y

nj

j ,

P (Y
nj

j |X
nj

j ) =
∏

k=j:J:nj

P (yk|X
k−pLa−1

k−p0
). (6)

As mentioned, the channel output yk may be fed to a subtree
whose state does not include all the bits on which yk is de-
pendent. Let us denote by Xj

(a) = {xk−pi ∈ X
k−pLa−1

k−p0
}

and Xj
(u) = {xk−pi 6∈ X

k−pLa−1

k−p0
}, i ∈ {0, . . . , La − 1}, the

F bits available and the D bits unavailable, respectively, in
the j-th subtree state. The conditional likelihood of yk can be
written as

P (yk|X
nj

j ) = P
(
yk|Xj

(a)

)
(7)

=
∑
l

P
(
yk|Xj

(a),X
j
(u) = ql

)
P (Xj

(u) = ql),

where the vector ql = {qdl }, 1 ≤ d ≤ D, denotes the
l-th realization of a length-D BPSK sequence. Given the
sequence X

k−pLa−1

k−p0
, the received element yk is Gaussian,

yk ∼ N (hT
aX

k−pLa−1

k−p0
, σ2). Therefore,

P
(
yk|Xj

(a),X
j
(u) = ql

)
= (8)

1√
2πσ2

exp

− (yk − hT
a {X

k−pLa−1

k−p0
}Xj

(u)
=ql

)2

2σ2

 ,

where {Xk−pLa−1

k−p0
}Xj

(u)
=ql

denotes the sequence X
k−pLa−1

k−p0

with Xj
(u) = ql. Noting that the elements of Xj

(u) are inde-
pendent, we have

P (Xj
(u) = ql) =

D∏
d=1

P (Xj
(u)(d) = ql(d)), (9)

where P (Xj
(u)(d) = ql(d)) is the soft information that must

be obtained from another subtree. Suppose, for example, that
symbol Xj

(u)(d) is available in subtree t, t 6= j. If all paths in

subtree t are explored to depth Nt, P (X
j
(u)(d) = ql(d)) can

be exactly computed based on the likelihoods of the paths for
which Xj

(u)(d) = ql(d), i.e.,

P (Xj
(u)(d) = ql(d)) =

∑
X

Nt
t : X

(u)
j (d)=ql(d)

P (XNt
t |Y

Nt
t ).

(10)

When the SA is used, however, not all paths in a subtree are
explored. Thus, P (Xj

(u)(d) = ql(d)) can be obtained only
approximately based on the paths present in the stack for sub-
tree t,

P (Xj
(u)(d) = ql(d)) ≈

∑
X

nt
t ∈St: X

(u)
j (d)=ql(d)

P (Xnt
t |Y

Nt
t ),

(11)
where St denotes the stack for subtree t.

The observation likelihood term, P (Ynj

j |X
nj

j ), can be
obtained by substituting (7), which incorporates (8) and (9),
into (6). Substituting (5) and (6) into (4) produces a closed-
form expression for the path metric that is used in each subtree
of the MTA.

3.2. Determination of the number of subtrees J

In order to determine the number of subtrees J , we use the cri-
terion of minimizing the number of soft estimates exchanged
among subtrees. Recall the expression of the sparse chan-
nel output given in (2). The first p1 − p0 channel outputs
yk, k = 1, . . . , p1 − p0, are dependent only on single sym-
bols xk, k = 1, . . . , p1 − p0, respectively. Outputs yk, k =
p1 − p0 + 1, . . . , N , are dependent on multiple input sym-
bols. In order to minimize the number of soft estimates ex-
changed, we need to maximize the number of symbols xk−pi

,
i = 1, . . . , La − 1, available in subtree j. Due to the vary-
ing number of zeros between active channel taps, we can only
guarantee that two symbols, xk and xk−pi , are in subtree j.
The first p1− p0 symbols can be arranged to form the first bit
for each subtree state, and xk, p1 − p0 < k < p2, can then be
estimated without obtaining information from other subtrees;
this is accomplished by setting J = pi−p0, i = 1, . . . , La−1.
To estimate xk, k > p1 − p0, subtree j must obtain La − 2
soft estimates from other trees.

3.3. Summary of the MTA

The MTA procedure is summarized below. Without loss of
generality, we assume the sparse channel has La = 3 active
taps.

1 Initialization: Construct J = p1 − p0 parallel subtree
modules, each of which represents the search space
spanned by transmitted symbols X

Nj

j = {xJl+j},
where j = 1, . . . , J and l = 0, 1, . . . , (N/J − 1).
Divide the received signal into J subsets, Y

Nj

j =
{yJl+j}. Insert a root node with metric 0 into a stack
for each subtree. Set j = 1 and l = 1.

2 Extend the path at the top of Sj , the stack for subtree j,
to all of its children and compute the new path metrics.
The soft estimates generated by subtree (J(l−1)+ j−
(p2 − p1))⊕ J are taken as input, where ⊕ denotes the
modulo operation. For a branch at depth l, the metric is
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computed using the estimate P (xJ(l−1)+j−(p2−p1) =
±1) from subtree (J(l − 1) + j − (p2 − p1)) ⊕ J if
Jl + j ≥ p2. Otherwise, no soft estimate needs to be
obtained.

3 Store all explored paths and their metrics in Sj in order
of decreasing metric value.

4 If the depth of the top path in Sj is l, go to 5 . Other-
wise, return to 2 .

5 Within subtree j, generate soft estimateP (xJ(l−1)+j =
±1) using (11); pass the soft estimate to subtree (J(l−
1) + j − (p2 − p1)− 1)⊕ J if Jl + j ≥ p2.

6 If j < J , set j = j + 1 and return to 2 . Otherwise, go
to 7 .

7 If the top paths of all J stacks have reached a leaf of
the corresponding subtree, i.e., l = (N − J)/J , stop
and output the sequences from all J subtrees in order.
Otherwise, set l = l + 1 and j = 1, and return to 2 .

4. COMPLEXITY ANALYSIS AND SIMULATIONS

To illustrate the complexity and performance of the proposed
MTA, we compare it to the VA, SA and MVA for a sparse
channel with length Lh and La active channel taps. We take
the number of computations of a path metric as the com-
plexity measure. For an input sequence with length N , the
computational complexity of the conventional VA is NMLh

[10], and the complexity of MVA is NMLa [7]. There is
no closed-form expression for the complexity of MTA, as the
number of path extensions for the SA varies with the received
sequence. Only an upper bound on the complexity can be
found [11]. Therefore, we evaluate the complexity of pro-
posed MTA algorithm empirically for comparison with com-
peting algorithms.

Simulations have been conducted for a length Lh = 6
sparse channel withLa = 3 active taps, h = [h0, 0, 0, h1, 0, h2].
1000 blocks of 1200 BPSK symbols are passed over the
sparse channel. For each data block, the active channel taps
ha = [h0, h1, h2] are drawn from a uniform distribution on
interval (0, 1), and the channel energy is normalized to 1.
The stack size of the SA is set to 106 to make erasures rare.
The average number of computations performed per trans-
mitted block as a function of SNR is shown in Table 1 for the
four detection methods considered. As SNR increases, the
complexity of the VA and MVA remain constant, while the
complexity of the MTA decreases dramatically, as would be
expected of a stack-based algorithm. For SNR from 5 dB to
10 dB, the MTA achieves significant computational complex-
ity reduction compared to the other three methods. For SNR
greater than 10 dB, the SA and MTA are likely to follow a
single path and explore very little of the tree, causing their
similar complexity.

A performance comparison of the four methods is shown
in Fig.1. The MTA suffers some performance loss compared

Number of Computations
VA MVA SA MTA

4dB 76800 9600 154518 74698
5dB 76800 9600 14429 5687
6dB 76800 9600 7551 4758
7dB 76800 9600 5059 3207
8dB 76800 9600 3286 2426
9dB 76800 9600 2726 2411
10dB 76800 9600 2512 2405
11dB 76800 9600 2408 2401

Table 1: Computations performed for the VA, MVA, SA and MTA using a
length-1200 sequence for a length-Lh = 6 sparse channel with La = 3
active taps.

Fig. 1: Performance comparison of the VA, SA, MVA and MTA for a length-
Lh = 6 sparse channel with La = 3 active taps.

to the VA, but its performance is very close to that of the SA
and MVA. The performance difference among the methods
decreases as SNR increases. Therefore, with only slight per-
formance degradation, the proposed MTA provides a compu-
tationally efficient approach to data detection for sparse ISI
channels at moderate SNRs.

5. CONCLUSIONS AND FUTURE DIRECTIONS

We have introduced a computationally efficient algorithm
for sequential detection of data transmitted over a sparse
ISI channel. By constructing and searching multiple trees,
each of which is used to estimate a subset of the transmitted
symbols, the proposed MTA reduces detection complexity by
eliminating redundant computations of path likelihood met-
rics. Simulation results show that the MTA can achieve signif-
icant complexity reduction relative to competing trellis-based
schemes for moderate to high SNR. Future work will focus
on analyzing the quality of the soft information exchanged
among subtrees and extending the MTA for application to
time-varying channels.
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