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ABSTRACT

Sparse integer least-squares problems come up in a wide
range of applications including wireless communications and
genomics. The sphere decoding algorithm can find near-
optimal solution to these problems with reduced average
complexity if the knowledge of sparsity of the unknown vec-
tor is used in decoding. In this paper, we formulate a sphere
decoding approach that relies on the `0-norm constraint on
the unknown vector to solve sparse integer least-squares prob-
lems. The expected complexity of this algorithm is derived
analytically for sparse alphabets associated with common ap-
plications such as sparse channel estimation and validated via
simulations. The results indicate superior performance and
speed compared to the classical sphere decoding algorithm.

Index Terms— Sphere-decoding, sparsity, expected com-
plexity, integer least-squared problems, `0 norm.

1. INTRODUCTION

Solving integer least-squares problems where the unknown
vector is sparse, arises in a broad range of applications includ-
ing multi-user detection in wireless communication systems
[1], sparse array processing [2], collusion-resistant digital fin-
gerprinting [3], and array-comparative genomic hybridization
microarrays [4]. Formally, the sparse integer least-squares
(ILS) problem can be stated as the cardinality constrained op-
timization

min
x∈DmL

‖y −Hx‖22 (1)

subject to ‖x‖0 ≤ `,

where y ∈ Rn×1 and H ∈ Rn×m are the measured vec-
tor and coefficient matrix respectively, and x denotes an m-
dimensional unknown vector with entries from a set of inte-
gers DmL ⊂ Zm having L elements. ` is an upper bound on
the estimate of the `0 norm of the unknown vector. For exam-
ple, order of a sparse frequency-selective channel [5] can be
estimated a priori to serve as the parameter ` in (1). All of the
aforementioned applications have n ≥ m. Note that (1) can

be interpreted as a search for a point closest to the given point
y in a sparse integer lattice.

In many communication applications, sphere decoding al-
gorithm is capable of solving ILS problems efficiently. The
knowledge of sparsity of x can be exploited in the classical
sphere decoding search to improve the accuracy and com-
plexity of the algorithm. The computational complexity of
solving (1) is a major concern since the closest lattice point
problem is known to be NP hard [6]. In [7] and [8], it was
shown that if the sphere radius is chosen according to the per-
turbation noise ν = y − Hx, classical sphere decoding ex-
hibits an expected complexity that is practically feasible over
a wide range of signal-to-noise ratios (SNRs) and system di-
mensions. This served as the motivation for the complexity
analysis of sparsity-aware sphere decoder in this paper.

Recently, several variants of sphere decoder which ac-
count for sparsity of the unknown vector were proposed [2],
[9], [1]. [2] proposed a sphere decoding algorithm using re-
laxed constraint in the form of `1 regularizer. However, this
scheme works only for non-negative alphabets where ‖x‖1
can be decomposed into sum of components of x. In [9],
a generalized sphere decoding approach with `1 constraint is
adopted for sparse ILS with {0, 1} alphabet under compressed
sensing framework. An `0-norm regularized sphere decoder
has been studied in [1], where the regularizing parameter λ
used in the distance metric is a function of the prior probabil-
ity of the components of the unknown vector. In contrast, in
this paper we directly impose `0-norm constraint on the so-
lution vector and do not require knowledge of its statistical
properties. Closest point search in a sparse lattice has been
studied in [10] but sparsity there stems from the fact that not
all lattice points are valid codewords of linear block codes.

Contributions of this paper are as follows. We propose a
sparsity-aware sphere decoding algorithm which enforces `0-
norm constraint on the solution vector. This algorithm is suit-
able for various alphabets and is applicable to generic prob-
lems without any restriction/assumption on the system model.
Furthermore, we quantify the complexity of this algorithm by
its expected value and perform validation via simulations for
commonly occurring sparse alphabets.
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2. SPHERE DECODING ALGORITHM

The sphere decoding algorithm in an m-dimensional lattice
conducts a search within a sphere of radius d, centered at
the received point y, and, if no point is found within this
sphere, repeats the search over a sphere of larger radius. The
search over all lattice points x satisfying the sphere constraint
d2 ≥ ‖y −Hx‖22 is performed by reducing the search over
an m-dimensional sphere to a sequence of searches over 1-
dimensional intervals. To illustrate the procedure, it is conve-
nient to rewrite the sphere constraint as [7]

d2 − ‖Q∗2y‖2 ≥ (zm − rm,mxm)2 + (zm−1

− rm−1,mxm − rm−1,m−1xm−1)2 + . . .
(2)

where z = Q∗1y and ri,j is the (i, j) entry of R, the upper-
triangular matrix in the QR-decomposition of H,

H = Q

[
R

0(n−m×m)

]
(3)

and Q1 and Q2 are composed of the first m and last n − m
orthonormal columns of Q, respectively. A necessary con-
dition for Hx to lie inside the sphere is d2 − ‖Q∗2y‖2 ≥
(zm − rm,mxm)2. For every such xm, a stronger necessary
condition can be found by considering the first two terms on
the right-hand side of (2) and imposing a condition on xm−1.
One can proceed in a similar way to determine conditions for
xm−2, . . . , x1, thus determining all lattice points that satisfy
d2 ≥ ‖y −Hx‖22.

The sphere decoding algorithm can be geometrically in-
terpreted as a depth-first search on a tree whose nodes at kth

level represent k-dimensional points [xm−k+1 xm−k+2 . . .
xm]T . The algorithm prunes those nodes at kth level which
do not belong to the k-dimensional sphere of radius d. A
node at level m which yields lowest objective function value
is a solution for the ILS problem.

3. SPARSITY-AWARE SPHERE DECODING

In this paper, the requirement of the solution vector to be
sparse is enforced by imposing a constraint on the `0 norm
of lattice points x during sphere decoding search. As a result,
necessary conditions that the components of x must satisfy
in order to qualify for the solution become more restrictive.
Consequently, not all lattice points within the search radius
now satisfy these new conditions and the search takes lesser
time than in the case of having to examine every lattice point
satisfying the sphere constraint.

In order to find sparse x in sphere decoding tree search, it
is required to redefine the constraint that is checked for each
node of the tree. Let us suppose a node at the kth level of
the tree lies within the 1-dimensional interval determined by

Table 1. Sparsity-aware Sphere Decoding Algorithm
Input: Q = [Q1 Q2], R, y, z = Q∗1y, sphere radius d,
sparsity constraint `.

1. Initialize k ← m, d2m ← d2 − ‖Q∗2y‖2,
zm|m+1 ← zm, `m ← 0 .
2. Update Interval UB(xk)←

⌊
(dk + zk|k+1)/Rk,k

⌋
,

LB(xk)←
⌈
(−dk + zk|k+1)/Rk,k

⌉
, xk ← LB(xk)− 1.

3. Update xk xk ← xk + 1. If xk ≤ UB(xk),

go to 4; else go to 5.
4. Check Sparsity If `k + 1{xk 6=0} ≤ `,
`k ← `k + 1{xk 6=0}, and go to 6; else go to 3.
5. Increase k k ← k + 1. If k = m+ 1, stop;
else, `k ← `k − 1{xk 6=0} and go to 3.
6. Decrease k If k = 1, go to 7; else k ← k − 1,
zk|k+1 ← zk −

∑m
j=k+1Rk,jxj ,

d2k ← d2k+1 −(zk+1|k+2 −Rk+1,k+1xk+1)
2, and go to 2.

7. Solution found Save x and its distance from y,
d2m − d21 + (z1 −R1,1 x1)

2, `k ← `k − 1{xk 6=0}
and go to 3.

the nodes in the preceding k − 1 levels. Note that the num-
ber of nonzero symbols along the path from the topmost level
leading to this node is a measure of the sparseness of the k-
dimensional point under consideration. For this node to lie
within the k-dimensional sphere of radius d, this value should
not exceed the overall sparsity constraint `. Hence, the `0
constraint effectively becomes a stricter criterion for pruning
nodes from the tree during the depth-first search.

Table 1 presents the sparsity-aware sphere decoding algo-
rithm, which uses the framework provided in [7]. Note that
the variable `k for a node at the kth level of the tree denotes
the number of nonzero symbols up to but not including that
node. The sparsity criterion is checked in step 4 before pro-
ceeding along a node and incurs a nominal increase in the
number of computations required per node. Whenever the al-
gorithm goes up a level on the tree, `k is adjusted to represent
the current node.

Remarks 1: 1 denotes the indicator function, given by 1A
= 1 if the statement A is true, 0 otherwise. zk|k+1 is defined
as the received signal zk adjusted with the already estimated
symbol components xk+1, . . . , xm. Also, the algorithm as-
sumes an alphabet with unit minimum spacing and can be
generalized easily.

Remarks 2: For nonnegative alphabets, sparsity-aware
sphere decoding algorithm can be modified to prune nodes
at any level if an earlier node on the same level is found to
violate the sparsity constraint. Details are omitted here for
brevity.
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4. EXPECTED COMPLEXITY

It is mentioned in [7] that the expected complexity of sphere-
decoding algorithm depends on the average number of nodes
in the tree visited by the algorithm, and, is a random vari-
able if H and ν are assumed to be random variables. If the
perturbation ν follows N (0, σ2I) distribution with indepen-
dent entries, where σ2 is the component wise variance, then
1
σ2 ‖ν‖2 is a χ2

n random variable. It has been suggested in [7]
that given a small ε > 0, there is a high probability of finding
a lattice point inside a sphere of radius d = σ

√
αn, if α satis-

fies the relation γ(αn2 ,
n
2 ) = 1− ε, where γ is the normalized

incomplete gamma function. It has also been shown in [7]
that with this choice of radius, the probability of an arbitrary
lattice point xa lying inside the sphere of radius d centered at
y is

P(‖y −Hxa‖22 ≤ d2) = γ

(
d2

2(σ2 + ‖xa − xt‖2)
,
n

2

)
(4)

where xt denotes the true value of the unknown vector x.
Let xk denote the k-dimensional component [xm−k+1 · · ·

xm]T of any vector x. The expected number of points visited
at the kth level by the classical sphere decoder is given by [7]

E(k, d2) =
1

Lk

∑
η

∑
xkt ,x

k
a∈D

k
L
,

‖xkt−xka‖
2=η

γ
( d2

2(σ2 + η)
,
n−m+ k

2

)
.

In case of the sparsity-aware sphere decoder, above expres-
sion needs to be modified to

E′(k, d2) =
1

NL(k, `)

∑
η

∑
xkt ,x

k
a∈D

k
L,

‖xkt−x
k
a‖

2=η,

‖xkt ‖0≤`,‖x
k
a‖0≤`

γ
( d2

2(σ2 + η)
,
n−m+ k

2

)
.

where NL(k, `) is the total number of possible k-dimensional

`-sparse vectors, given by NL(k, `) =
min (k,`)∑
t=0

(
k
t

)
(L− 1)t.

The main challenge in evaluating the above expression is
to come up with an efficient enumeration of the symbol space,
i.e., to determine the number of pairs of `-sparse vectors xka
and xkt such that ‖xkt − xka‖2 = η holds. While this enumer-
ation appears to be difficult in general, it can be solved for
some of the most commonly encountered alphabets in sparse
integer least square problems: the binary {0, 1} alphabet (rel-
evant in [3], [2], [5]) and the ternary alphabet {−1, 0, 1} al-
phabet (relevant in [4]).

4.1. Binary Alphabet {0,1}

A close inspection of the complexity expression for sparsity-
aware sphere decoder reveals that in order to enumerate the
symbol space, we need to consider all possible `-sparse vector
xka ∈ DkL satisfying ‖xka − xkt ‖2 = η for each `-sparse vector
xkt ∈ DkL. Note that for binary alphabet, η is the number of

components of xkt and xka that differ from each other. Let
k1 = ‖xkt ‖0. Given xkt , the number of lattice points xka with
‖xka‖0 = k2 satisfying ‖xka − xkt ‖2 = η is given by

g(k1, k2, k, η) =

{(
k1
k2−p

)(
k−k1
p

)
, if k1 ≥ k2(

k1
k1−p

)(
k−k1

k2−k1+p
)
, if k1 < k2

(5)

where p = (η − |k1 − k2|)/2.
Eqn. (5) can be derived by considering all possible ways of
combinatorially arranging the alphabets in xka for a given xkt ,
as described below.
Case 1: k1 ≥ k2
Let p be the number of ‘1’ s in xka occurring in k−k1 positions
corresponding to ‘0’s of xkt . The number of ways of arranging
these ‘1’s is

(
k−k1
p

)
. For each of the above combinations, re-

maining k2 − p ‘1’s of xka can be arranged in the k1 positions
corresponding to ‘1’s of xkt in

(
k1
k2−p

)
ways. The total number

of positions where xkt and xka differ is η = p+ k1− (k2− p)
or p = (η − (k1 − k2))/2.
Case 2: k1 < k2
Let p be the number of ‘0’s in xka occurring in k1 positions
corresponding to ‘1’s of xkt . The number of ways of arrang-
ing these ‘0’s is

(
k1
p

)
=
(
k1
k1−p

)
. For each of the above com-

binations, remaining (k − k2 − p) ‘0’s of xka can be ar-
ranged in the k − k1 positions corresponding to ‘0’s of xkt in(
k−k1
k−k2−p

)
=
(

k−k1
k2−k1+p

)
ways. The total number of positions

where xkt and xka differ is η = p+ k − k1 − (k − k2 − p) or
p = (η − (k2 − k1))/2.
From the above two cases, we obtain (5).

Given xkt and xka, range of η is given by S = {|k1 −
k2|, |k1 − k2| + 2, . . . ,min {k1 + k2, k}}. Combining all
these, the expected number of lattice points visited by the
sparsity-aware sphere decoding algorithm in a k-dimensional
sphere of radius d is given by

E′(k, d2) =
1

N2(k, `)

min(k,`)∑
k1=0

(
k

k1

)min(k,`)∑
k2=0

×
∑
η∈S

γ

(
d2

2(σ2 + η)
,
n−m+ k

2

)
g(k1, k2, k, η) (6)

Eqn. (6) can be used to identify the complexity for certain
special cases of closest lattice point search. For very large ra-
dius, the sphere decoding search is based only on the sparsity
constraint and (6) reduces to

E′(k, d2) =
1

N2(k, `)

min(k,`)∑
k1=0

(
k

k1

)min(k,`)∑
k2=0

(
k

k2

)

=

min(k,`)∑
k1=0

(
k

k1

)
(7)

which corresponds to the worst-case scenario and requires a
brute force search over all `-sparse signal, which can lead to
a complexity exponential in k.
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If the unknown vector xt is sparse but the sphere decoder
is unaware of this information, then the expected complexity
in (6) reduces to

E′(k, d2) =
1

N2(k, `)

min(k,`)∑
k1=0

(
k

k1

) k∑
k2=0

∑
η∈S

× γ
( d2

2(σ2 + η)
,
n−m+ k

2

)
g(k1, k2, k, η) (8)

Eqn. (8) is clearly an upper bound for eqn. (6), and there-
fore, sparsity information at the decoder results in reduction
in expected complexity.

Lastly, the overall expected complexity is given by

C(m, d2) =

m∑
k=1

fp(k) E
′(k, d2) (9)

where fp(k) denotes the flop counts (or the number of opera-
tions in the algorithm) in the kth level of the tree. The com-
plexity exponent is defined as ec = log (C(m, d2))/ logm.

4.2. Ternary Alphabet {−1, 0, 1}

We present the expected complexity expressions for ternary
alphabets in this section and omit the derivation because of
space limitation.

The number of all possible vectors xka with ‖xka‖0 = k2
for a given xkt (‖xkt ‖0 = k1) and satisfying ‖xka − xkt ‖2 = η
can be shown to be

g(k1, k2, k, p, q) =


(
k1
q

)(
k1−q
k2−q−p

)(
k−k1
p

)
2p, if k1 ≥ k2(

k1
p

)(
k1−p
q

)(
k−k1

k2−k1+p
)
2k2−k1+p,

if k1 < k2
(10)

where η is given by η = |k1 − k2|+ 2p+ 4q, and ranges of p
and q are defined by the sets Sp = {0, . . . ,min(k1, k2, k−k1,
k − k2)} and Sq = {0, . . . , (min (k1, k2)− p)} respectively.
Then, the expected number of lattice points visited by the
sparsity-aware sphere decoder in a k-dimensional sphere of
radius d is given by

E′(k, d2) =
1

N3(k, `)

min(k,`)∑
k1=0

(
k

k1

)
2k1

×

(
min(k,`)∑
k2=0

∑
p ∈ Sp

∑
q ∈ Sq

g(k1, k2, k, p, q)

× γ
( d2

2(σ2 + |k1 − k2|+ 2p+ 4q)
,
n−m+ k

2

) )

5. SIMULATIONS

We present complexity exponent versus SNR plots to demon-
strate the expected complexity of the sparsity-aware sphere

(a)

(b) (c)

Fig. 1. Simulation results for expected complexity and error
rate of sparsity-aware sphere decoder.

decoder in Figure 1(a), (b). Figure 1(a) shows the compari-
son of theoretical complexity of sparsity-aware SD with that
of actual simulations for binary alphabet {0, 1} for n = m =
20, ` = 5. This figure also shows the expected complexity
of classical SD which is sparsity-unaware, indicating that the
proposed algorithm performs faster. Figure 1(b) compares the
theoretical expression of expected complexity with simula-
tions for ternary alphabet {−1, 0, 1} for n = m = 10, ` = 1.
Figure 1(c) shows the comparison of the error rate perfor-
mance of sparsity-aware SD with the classical SD as a func-
tion of the parameter ` at SNR = 10 dB. It is clear from this
plot that the sparsity-aware SD has significantly better error
rate for low sparsity levels.

6. CONCLUSION

We have proposed a sparsity-aware sphere decoding approach
based on `0 norm constraint and analyzed its expected com-
plexity for sparse binary and ternary alphabets. Simulations
show that the expected complexity of the sparsity-aware
sphere decoder is practically more feasible than classical
sphere decoder for the considered system parameters.

As part of the future work, we will study higher-order mo-
ments of the algorithm complexity as well as the performance
of the proposed algorithm in various applications.
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