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ABSTRACT
Motivated by the compelling application of interference miti-
gation at wideband receivers in wireless communication and
sensing systems, we consider the recovery of a frequency-
sparse signal from samples of small magnitude. The stan-
dard `1-norm minimization results in an inadequate signal-
dependent recovery performance, and hence we introduce
three techniques to improve the quality of recovery. The
performance of each of these three techniques is character-
ized through numerical simulations, from which we conclude
that each of the proposed techniques show the promise of
substantially improving recovery performance.

Index Terms— interference rejection, nonlinear distor-
tion, compressive sensing, nonuniform sampling, cognitive
radio.

1. INTRODUCTION

In this paper, we consider the compressive sensing (CS) re-
covery of frequency-sparse signals from samples taken only
when the signal amplitude is small; that is, we attempt to
recover the signal using samples with values within a range
[−τ, τ ].

For motivation, consider the reception of a low-power
message signal in the presence of high-power interferers at a
receiver in a wideband wireless communications or sensing
system. For instance, cognitive radio receivers feature an
analog front-end that starts with an initial bandwidth wide
enough for all supported applications and then down-selects
in a reconfigurable way to a set of one or more relatively
narrow sub-bands. The low noise amplifier (LNA), which
generally comes first in the analog receiver chain, needs to
be wideband as the amplification takes place before the sub-
band selection. Despite decades of significant efforts by the
microwave circuits community, RF LNAs feature inherent
nonlinearities that become apparent at high power levels.
Because of the large bandwidths employed by cognitive ra-
dio systems, interference is nearly always present, and the
power of the interfering signals can often be multiple orders
of magnitude higher than the power of the signal of interest
as the interfering transmitters can be located much closer to
the receiver than the transmitter whose message needs to be
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received. Nonlinearities in the first stages of the hardware al-
low large interferers to corrupt lower-level signals before the
interferers can be de-selected, even if the interferers occupy
frequencies different than the message frequencies. Con-
ventional filtering or projection methods (e.g., [1]) after the
front-end cannot remove this distortion due to the presence
of the nonlinearity. This problem arises in other wideband
applications ranging from environmental sensing to vehicle
surveillance, etc.

Combining observations on circuits (devices are linear for
small amplitudes) and the fact that the signals of interest are
often frequency-sparse, we propose reconstruction of a sparse
signal from small-amplitude samples that preserve linearity
of the receiver’s front-end. The small-amplitude signal sam-
pling approach introduced in this paper falls in the field of sig-
nal dependent non-uniform sampling. Early and significant
work on signal-dependent sampling was done by Logan [2],
who established sufficient conditions for the zero-crossings
of a signal to uniquely determine it. Existing practical recov-
ery algorithms from the zero-crossing information are how-
ever known to be unstable. Boufounos and Baraniuk [3] in-
troduced an additional signal sparsity assumption to gain ro-
bustness in signal recovery from zero-crossings. Recovery
of frequency-sparse signals from non-zero level crossings as
well as from multiple level crossings has been addressed re-
cently by Sharma and Sreenivas [4]. Our work is significantly
different from [3, 4]: instead of sampling non-uniformly at
the times when the signal crosses predefined levels, we con-
sider sampling the signal uniformly at high sampling rates and
then selecting only the samples whose amplitudes are below
a given threshold τ , while discarding potentially nonlinearly
distorted samples with values that exceed the threshold.

Perhaps the prior contribution most closely related to
our work is the recent independent work of [5], which also
considers the recovery of frequency-sparse signals from a re-
duced set of samples. The sample subselection in [5] is driven
by signal clipping; the resulting algorithms that account for
clipping are similar to those we discuss here. However, in
contrast to [5], we study the performance of CS with the
proposed algorithms as a function of the amplitude of the
threshold that samples must meet to be deemed suitable for
signal recovery. Such threshold τ controls the fraction of
samples that are used in recovery, cf. Figure 4. Our results
show the impact that different options to leverage sample se-
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lection information during recovery have on CS performance.
Parallel work by a subset of the authors [6] describes an

application where measurements are judged according to their
quality. In that work, a low-level message signal was recov-
ered from the output of a low-cost LNA at the same time it
is being saturated by a two-toned interferer. The message’s
complex amplitude was recovered by simple projection un-
der the assumption that the interferer and message signal fre-
quencies are known. In contrast, this work assumes no knowl-
edge of the signal’s frequency components and uses CS tech-
niques to retrieve the signal from the below-threshold sam-
ple set. We use `1-norm minimization recovery algorithms
and show that, for many cases, successful recovery is pos-
sible even if only a small subset of low-amplitude samples
is available. We also propose three alternative measurement
and recovery approaches for the cases when recovery from
small-amplitude samples leads to erroneous results: `1-norm
minimization with additional nonlinearity constraints, itera-
tive `1-norm minimization, and injection of a known signal to
be subtracted after measuring. All three approaches can help
to recover successfully.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the formal problem statement. Our three pro-
posed approaches for signal recovery from small-amplitude
samples are described in Section 3. Numerical results that
verify the utility of the proposed recovery approaches are pre-
sented in Section 4. Finally, Section 5 concludes the paper.

2. PROBLEM STATEMENT

Consider a frequency sparse signal s, with unknown support,
captured at the receiver. s needs to be recovered from a set
of its small-amplitude samples. For that purpose, we solve a
linear program

Ŝ = arg min
S̄
||S̄||1 s.t. AS̄ = AS, (1)

where S = Fs is the Fourier representation of s, A = MFH

is a transformation matrix, M is a measurement matrix, and
FH is the Hermitian conjugate of the Fourier matrix F . The
probability of recovery error Perr is defined as the probability
of the normalized recovery error

NRE = ‖s− ŝ‖2/‖s‖2 (2)

being above a target value ρ.
The characteristics of the measurement matrix depend on

the measurement scheme. In order to reduce the sampling rate
of analog-to-digital converters (ADCs), individual measure-
ments can be built as a linear combination of multiple time
samples [7]. We assume that the measurement matrix M is
built out of rows of an identity matrix that correspond to the
indices of small-amplitude samples.

It is well known [8] that if the time samples are taken
uniformly at random, then the recovery guarantees of com-
pressive sensing are independent from the support of the

frequency-sparse signal that needs to be recovered. When the
uniform randomness of the sampling scheme is violated, re-
covery performance can become support-dependent [9]. The
signal-dependent sampling approach considered in this work
clearly violates the randomness assumptions of compressive
sensing. Thus, it is expected that the recovery method (1) will
have varying performance for signals with different supports
of the same size, even if the size of the set of small-amplitude
samples used for the recovery is the same. The next section
presents approaches for enhancing the recoverability of the
sparse signals from the amplitude limited sample sets for
the cases when the standard recovery (1) leads to erroneous
results.

3. APPROACHES

We will demonstrate in Section 4 that an `1-norm minimiza-
tion (1) fitting only the values of the samples with amplitude
less than τ will encounter ambiguities for some signals (i.e.,
signal-dependent performance). In this section, we consider
three approaches for improving performance of the recovery.
Methods described in Subsections 3.1 and 3.2 have been con-
sidered in independent work of [5], where signal clipping was
driving small sample selection.

3.1. `1-norm minimization with inequality constraints

The recoverability of a frequency-sparse signal s from a
small-amplitude sample set can be enhanced by taking into
account additional information about s that becomes avail-
able while discarding large-amplitude samples. In particular,
the indices of samples whose amplitudes exceed the prede-
fined threshold τ are known, and this information can be
exploited via inequality constraints in the linear program (1).
The resulting optimization problem becomes

Ŝ = arg min
S̄
||S̄||1 s.t. AS̄ = AS, |s(Γ)| > τ (3)

where Γ is a vector of time stamps of samples that have been
discarded. The incorporation of these inequality constraints
into standard CS recovery was suggested in [10], where un-
bounded measurement quantization errors caused by the sat-
uration of ADCs were considered. Because of the relatively
easy implementation of threshold comparators at the receiver,
the extension of the constraints from (3) to multiple thresh-
olds τn > τn−1 > · · · > τ is worth considering for our appli-
cation of interest. The advantage of adding a second threshold
and additional constraints to (3) of the form

AS̄ = AS, τ2 ≥ |s(Γ)| > τ, |s(Γ2)| > τ2, (4)

will be studied in Section 4.

3.2. Iterative `1-norm minimization

A second approach for performance enhancement of (1)
when only small-amplitude samples are available is iterative
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`1-norm minimization. The minimization problem from (1)
is a relaxation of a computationally intractable combinatorial
problem of `0-“norm” minimization

Ŝ = arg min
S̄
||S̄||0 s.t. AS̄ = AS. (5)

The problem (1) can be solved efficiently and a body of ex-
isting work has shown there exist conditions under which the
combinatorial problem (5) and its relaxation (1) are equivalent
[11]. However, with the signal-dependent sampling scheme
considered in this work, the conventional assumptions of
CS are violated, which often leads to non-equivalence of (1)
and (5). In [12], the authors introduced an iterative recov-
ery algorithm consisting of a sequence of weighted `1-norm
minimizations that promotes the sparsity of the result of the
computationally tractable `1-norm minimization for the cases
when (1) and (5) are not equivalent:

Ŝi = arg min
S̄
‖CiS̄‖1 s.t. AS̄ = AS. (6)

The diagonal matrix Ci in (6) contains positive weights that
are updated in every iteration i to be inversely proportional to
the values of the solution of the previous iteration:

Ci+1(k, k) =
1

|Ŝi(k)|+ ε
, (7)

with ε being a positive constant used for stability; one can set
C1 to be the identity. The algorithm is robust with respect to
the choice of ε, which, as found empirically [12], should be
set to a value smaller than the expected amplitudes of coef-
ficients of the solution. The weights (7) promote sparsity of
the solution, as the coefficients with small amplitude values
contribute strongly to the weighted `1-norm ‖CiS̄‖1 in con-
secutive iterations. Thus, the final solution tends to consist of
a small number of coefficients of highest significance.

As will be shown in Section 4, the iterative recovery al-
gorithm (6) can lead to successful recovery of signals from
small-amplitude samples when (1) and (5) are not equivalent
due to a violation of the assumptions in CS, which leads to an
incorrect solution during the first iteration of (6).

3.3. Injection of artificial interferers

As a third approach to enhance the performance of (1) when
only small-amplitude sample sets are available, we consider
injection of a known interferer to the signal s. This corre-
sponds to the addition of a known interferer to the received
signal before the LNA in a wideband receiver. After injection
of the interferer, the samples of the signal s′ = s + iadd for
which the amplitude exceeds τ are discarded. Since the in-
terferer is known, the values of iadd for the samples retained
are subtracted from the respective samples of s′ and the re-
sulting signal is used for recovery. If the injected interferer
is uncorrelated with the signal s and the power of s and iadd
are similar, then the sampling times get decorrelated from the

frequency content of the signal s. The level of the random-
ization is higher as the injected interferer becomes more un-
structured. Since in practice the threshold τ is a fixed value
specified by the nonlinearity of the LNA, the injection of the
interferer implies a reduction of the number of samples re-
tained, due to the increased power in s′ with respect to s.
However, as will be shown in Section 4, the injection of a
known interferer can significantly enhance recoverability, de-
spite the penalty (decrease) on the number of samples caused
by the increase of the power of the sampled signal s′.

4. SIMULATIONS

In this section, we present simulation results for CS recov-
ery from sets of small-amplitude samples of frequency-sparse
signals. Consider a discrete signal s of length N = 751 that
consists of 10 tones. We consider two cases: (i) the tones
are randomly located on the frequency axis; and (ii) the tones
are positioned adjacently to build a single frequency band, lo-
cated randomly on the frequency axis. For both considered
cases (i) and (ii), the amplitudes and phases of the tones are
chosen uniformly at random from respective ranges: [0, 1] and
[0, 2π]. We let the threshold τ vary over the range [0, smax],
where smax is the maximal amplitude of the signal s. We then
discard all samples whose amplitudes are above the thresh-
old τ and preserve the remaining samples as measurements.
These measurements are used to solve the minimization prob-
lem (1) and to find the estimate of the message signal ŝ(t) as
described in Section 2. Figure 1 shows the probability of re-
covery error Perr of (1), defined as the probability that NRE
from (2) is above ρ = 3%, calculated over 100 trials for both
considered cases (i) and (ii) as a function of the threshold τ .
The figure shows that signal recovery is possible from fewer
low-amplitude samples of s for the case (i) as compared to
the case (ii).

For the case (ii), `1-norm minimization with inequality
constraints and iterative `1-norm minimization (cf. Sections
3.1 and 3.2) were applied to improve recovery performance
from small-amplitude samples. Figure 2 shows the proba-
bility of error Perr calculated over 50 trials as a function of
the threshold τ for the case (ii) when (1), (3) and (6) were
used. Five iterations were used for method (6); increasing
the number of iterations above five did not lead to meaning-
ful performance improvements. Figure 2 also shows Perr for
the case (ii) when (3) was used with the additional threshold
constraint (4). The second threshold τ2 was used only when
τ < 0.7 · smax and was set to τ2 = 0.75 · smax.

Finally, we study the recovery performance improvement
achieved via injection of known interferers. Figure 3 shows
Perr of (1), calculated over 100 trials as a function of the
threshold τ for the case (ii), when three different types of
known interferers were injected: 1 and 5 randomly positioned
tones and a random Gaussian noise. The average power of the
injected interferer was set to be equal to the power of the sig-
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Fig. 1. Probability of recovery error for the cases (i) and (ii) for
`1-norm minimization (1) as a function of the threshold τ .

Fig. 2. Probability of recovery error for the case (ii) for `1-norm
minimization (1), for iterative `1-norm minimization (6) and for con-
strained `1-norm minimization (3) and (4) as a function of the thresh-
old τ .

nal s. For the considered frequency-sparse signal s, even a
highly structured injected interferer (i.e., the sum of 5 tones)
leads to significant decorrelation of the sampling times from
the signal structure and thus significant recovery performance
enhancement. Figure 3 shows that, even for a fixed thresh-
old, which in practice is dictated by the characteristics of the
nonlinearity of the LNA, adding an interferer iadd enhances
recovery performance despite a reduction of the number of
samples due to the average power increase of s′ = s + iadd
with respect to s. Figure 4 shows the mapping between the
threshold τ and the number of small-amplitude samples used
for recovery, calculated over 100 trials, for different types of
known injected interferers. It shows how a fraction of samples
is lost due to the injected interferer, and how the choice of the
interferer is causing only a small difference in the number of
samples preserved.

5. CONCLUSIONS

Interference mitigation in wideband receivers is a critical
component in many modern wireless communication and

Fig. 3. Probability of recovery error for the case (ii) for `1-norm
minimization (1) as a function of the threshold τ , for different types
of known injected interferers.

Fig. 4. Number of small-amplitude samples used for recovery as a
function of the threshold τ for the case (i) and for the case (ii) for
different types of known interferers injected.

sensing applications. Performing signal recovery that con-
siders only samples of small magnitude (for which the RF
front-end is linear) has been recently proposed by a subset
of the authors. However, in this paper we have shown that
the standard `1-norm minimization recovery performance be-
comes signal-dependent due to the correlation between the
signal structure and the location of small-amplitude samples,
thus motivating the exploration of enhanced CS sampling and
recovery schemes. We have presented three such schemes
that show significant improvement over the standard `1-norm
minimization recovery from signal samples.

Future work will consider further algorithm development,
the integration to existing CS analog-to-digital converters [7],
and applications to interference mitigation in wideband re-
ceivers. Numerous challenges remain in this application, in-
cluding the consideration of memory effects at the LNA out-
put that can make sample timing matched to the linear region
of the LNA challenging. Implementing the proposed inter-
ferer injection schemes also presents challenges such as the
feasibility of accurate signal generation and removal.
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