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ABSTRACT

This paper considers the problem of covariance matrix esti-
mation from the viewpoint of statistical signal processing for
high-dimensional or wideband random processes. Due to lim-
ited sensing resources, it is often desired to accurately es-
timate the covariance matrix from a small number of sam-
ple observations. To make up for the lack of observations,
this paper leverages the structural characteristics of the ran-
dom processes by considering the interplay of three widely-
available signal structures: stationarity, sparsity and the un-
derlying probability distribution of the observed random sig-
nal. New problem formulations are developed that incorpo-
rate both compressive sampling and sparse covariance esti-
mation strategies. Tradeoff study is provided to illustrate the
design choices when estimating the covariance matrices using
a handful of sample observations.

Index Terms— sparse covariance estimation, compressed
sensing, high-dimensional data, convex optimization

1. INTRODUCTION

Considerable research efforts have been invested on statisti-
cal modeling and model selection for different problems in-
volving a large amount of data, for example, in fields such as
machine learning, data mining, computational biology, econo-
metrics, astronomy and so on. A class of such problems deal
with identifying the covariance matrix of the observed data.
Significant advances have been made in statistical analysis to
develop fast and robust algorithms to estimate the covariance
matrices of high-dimensional data. For example, sparse in-
verse covariance estimation has been discussed in [2, 8], and
sparse covariance estimation has been investigated in [3, 4,
5, 6, 7]. In these works, sparsity is typically enforced on the
(inverse) covariance for robust model selection and interpre-
tation. They also exploit the underlying probabilistic distribu-
tion of the data set; for example, covariance estimation under
multivariate Gaussian distribution is a canonical problem.

This paper considers the problem of high-dimensional co-
variance matrix estimation from the perspective of statistical
signal processing, where the data collection process and signal
characteristics of interest may differ from other fields. Partic-

ularly for wideband signals or random processes, the number
of available signal observations can be quite limited due to
constrained sensing resources in real-time sampling. In such
a scenario, it is desired to accurately estimate the covariance
matrix from a small number of signal observations. However,
when the number of samples is smaller than the signal dimen-
sion, the problem of covariance estimation becomes ill-posed.
Fortunately, the lack of observations can be made up by lever-
aging the known structures of the signal of interest. Here,
we consider the interplay of three widely-available statisti-
cal structures, namely, signal stationarity, sparsity and knowl-
edge of the underlying probability distribution of the observed
random signals. For example, the data collection process for
real-time signal acquisition may allow for compressive sam-
pling [1], which can be incorporated into the statistical ap-
proach for sparsity-enforcing covariance estimation for Gaus-
sian data [2, 3, 4, 5]. Accordingly, we formulate new opti-
mization problems for covariance matrix estimation, and dis-
cuss their implementation algorithms. Our study shows that
accurate estimation of the covariance matrix is indeed possi-
ble by appropriately exploiting the signal structures, even with
a handful of samples observations.

This paper deals with statistical signal processing where
real-time signal acquisition can be performed using compres-
sive sampling [1]. We aim to accurately estimate the covari-
ance matrix of a high-dimensional signal from a limited num-
ber of compressed data, which differ from the aforementioned
prior work dealing with uncompressed data [2]-[8]. Given the
same number of total samples, the tradeoff between data com-
pression and sample size is considered in this paper. More-
over, for wide-sense stationary signals, we consider the spe-
cial Toeplitz structure of the covariance matrix to further im-
prove the estimation accuracy and reduce the sampling costs.

A large body of research has been done on compressive
sampling (CS), but it mostly deals with deterministic signals
where the goal is to perfectly reconstruct the original signals
by exploiting sparsity [1]. Departing from this deterministic
approach, we do not necessarily impose sparsity constraints
on the signal itself; instead, we find sparsity in the signal co-
variance, which may arise because elements of a (non-sparse)
random signal can be marginally independent. In fact, it is re-
cently recognized that a deterministic approach to CS can be
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wasteful of sampling resources, when dealing with random
signals characterized by their probabilistic statistics [9, 10,
11]. This line of work on CS for random processes originates
from digital communications applications, where the goal is
to estimate power spectrum or cyclic spectrum. However, it
does not consider the underlying probabilistic distribution of
the signals, such as Gaussianity. In contrast, this paper con-
siders the basic covariance estimation problem, which can be
generalized to subsume the estimation of other second-order
statistics such as (cyclic) power spectrum. We consider the in-
terplay of all three widely-available signal structures, includ-
ing stationarity, sparsity and Gaussianity.

2. PROBLEM STATEMENT

Consider an N -variate random vector x with covariance ma-
trix Rx = E{xxT }. For clear exposition, x is assumed to be
real-valued, and of zero mean.

Suppose that there areL sample realizations [x0, . . . ,xL−1]
from the distribution of x. Then, Rx can be estimated as its
sample covariance matrix Sx, given by

Sx = 1
L

∑L−1
l=0 xlx

T
l . (1)

The data dimensionN can be much larger than the sample
size L, which renders Sx to be rank-deficient. In this case, it
is difficult to accurately estimate Rx. On the other hand, in
many applications the covariance matrix of high-dimensional
data exhibits some form of sparsity, because variables can be
marginally independent. It is hence prudent to exploit the
sparsity property of covariance matrices in order to improve
the estimation accuracy given a limited sample size. It is true
that the covariance matrix may not be sparse in many scenar-
ios; in that case, it is reasonable to assume that sparsity can be
attained in a suitable transform domain [11]. Therefore, it is
well motivated to study the covariance matrix, which can be
extended to estimate other second-order statistics as well. The
goal here is to estimate Rx given limited sensing resources.

3. SPARSE COVARIANCE ESTIMATION FOR
GAUSSIAN DATA

This section briefly reviews recent results on sparse estimation
of covariance matrices [3, 4, 5, 6]. This line of work in statisti-
cal analysis focuses on model selection and high-dimensional
data fitting for multivariate Gaussian data. Depending on the
application domains, data compression is often irrelevant. Our
description is primarily based on the results in [5].

Consider the case in which the sample size L is smaller
than the data dimension N . To reach an accurate estimate
of Rx, the probabilistic (Gaussian) distribution of the data is
utilized to construct a maximum likelihood (ML) estimator,
and an `1-norm penalty term on Rx can be imposed to induce
sparse estimates. Following [4, 5, 6], the objective function

for sparsity-enforcing ML estimation of Rx is given by

min
Rx

log det Rx + tr(R−1
x Sx) + λ‖W ∗Rx‖1. (2)

We choose to impose a component-wise penalization on Rx

via the matrix W containing only nonnegative elements, i.e.,
||W ∗ Rx||1, where ∗ denotes elementwise multiplication.
Depending on the a priori knowledge available regarding the
sparsity structure of Rx, we can choose W differently. For
example [5], (i) Wij = 1,∀i, j, (ii) Wii = 1,∀i 6= j and
Wii = 0,∀i, (iii) Wij = (|Sx(i, j)|+ ∆)−1,∀i 6= j, Wii =
0,∀i, where ∆ is a small positive scalar introduced for nu-
merical stability. Essentially, (ii) enforces sparsity on off-
diagonal elements of Rx only, while (iii) approaches an `0-
norm penalty on off-diagonal terms when Sx is close to the
true Rx. Throughout this paper, the `1-norm for a matrix B
is defined as its entry-wise norm, ‖B‖1 :=

∑
i,j |Bij |.

Note in (2) that the available parameter is the uncom-
pressed sample covariance Sx obtained from (1), while the
desired output is a (sparse) Rx reflecting the prior knowledge
of the data distribution. The objective function is non-convex,
posing numerical challenges. For solving (2), several fast
algorithms have been developed, e.g., [5, 6]. We adopt the al-
gorithm presented in [5]. It uses a majorization-minimization
approach to approximate the nonconvex objective (2) by iter-
atively solving the following convex problem:

R̂
(t)
x = arg min

Rx

tr
{
(R̂(t−1)

x )−1Rx

}
+ tr(R−1

x Sx)

+λ||W∗Rx||1 (3a)
s.t. Rx is p. s. d. (3b)

Here, R̂
(t−1)
x is the estimate of Rx obtained from the previ-

ous iteration step, and p.s.d. refers to positive semi-definite.
The steps for solving this problem is given in Section 3.2 and
Appendix 3 of [5]. Although (3) is not guaranteed to give a
global minimum, it has been shown that limit points of such
an algorithm are critical points of the objective (2) [12].

Besides the Gaussianity and sparsity properties of Rx

considered in (2), we will develop new algorithms that fur-
ther exploit the stationarity property of many signals and
take advantage of compressed sensing for analog signals, as
elaborated in ensuing sections.

4. THE ROLE OF STATIONARITY

Consider wide-sense stationary processes x. Let rxx(i) =
E{x(j)x(j + i)},∀i, j. Due to stationarity, the N × N co-
variance matrix Rx becomes a structured Toeplitz matrix:

Rx =


rxx(0) rxx(1) · · · rxx(N − 1)

rxx(1) rxx(0) rxx(1)
...

...
. . .

...
rxx(N − 1) · · · · · · rxx(0)


(4)
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There are N free parameters in Rx, which we can orga-
nize into an N × 1 vector rx in the form:

rx = [rxx(0), rxx(1), · · · , rxx(N − 1)]T . (5)

By mapping elements in rx to those in Rx, it can be shown
that

vec{Rx} = P̄Nrx (6)

where vec{·} is the vectorization operator that stacks a matrix
column-by-column into a vector, and P̄N ∈ {0, 1}N

2×N is
the specific mapping matrix; c.f., Section IV.A in [11].

In light of (6), the problem of estimating the covariance
matrix Rx can be equivalently solved by finding rx, with a
reduced number of unknowns. Accordingly, we refine the for-
mulation in (3) by incorporating the stationarity property, as
follows:

r̂
(t)
x = arg min

rx

(
vec
{

(R̂(t−1)
x )−T

})T
P̄Nrx + tr(H−1

x Sx)

+ λ||w ∗ rx||1 (7a)
s.t. vec{Rx} = P̄Nrx (7b)

Rx is p. s. d. (7c)

Here Hx := [H1rx H2rx · · · HNrx], where Hi := P̄N ((i−
1)N+1 : iN, :) is the i−th block of N rows in P̄N . Also,
w := QNvec{W}, where QN is a known mapping matrix
(cf. (15)). Note that the objective function in (7a) is convex
in rx, and (7b) enforces the Toeplitz symmetry.

5. COMPRESSED SENSING FOR COVARIANCE
ESTIMATION

We now consider the use of compressive sampling of random
signals to save the sensing resources. Compressive sample
vectors are collected via a K ×N sampling matrix A, in the
form

zl = Axl, l = 0, . . . , L− 1. (8)

Let Rz = E{zzT } denote the covariance matrix of z =
Ax. The uncompressed covariance matrix Rx is related to
the compressed covariance matrix Rz by

ARxAT = Rz. (9)

The resulting sample covariance of the compressed data is

Sz = 1
L

∑L−1
l=0 zlz

T
l . (10)

Evidently, Sz and Sx are related via the equality

ASxAT = Sz. (11)

Given {zl}L−1
l=0 , or Sz , the goal is to estimate Rx by es-

timating Sx first. Because the dimension of Sx is larger than
that of Sz , we cannot find accurate estimate unless we utilize

certain structural knowledge of Rx. By imposing sparsity on
Rx, the following formulation arises:

minRx ‖W ∗Rx‖1 (12a)
s.t. ARxAT = Sz. (12b)

Rx is p. s. d. (12c)

Here we choose W according to choice (ii), since the sample
covariancce Sx is unavailable when compressive sensing is
employed.

When x is stationary, Rx becomes Toeplitz, and (12) can
be further simplified. To do so, we vectorize both sides of (9),
and utilize the equality vec{UVW} = (WT ⊗U)vec{V},
to reach

(A⊗A)vec{Rx} = vec{Rz}. (13)

Note that Rz is symmetric, but does not possess the special
Toeplitz structure of Rx. Hence, there areK(K+1)/2 unique
elements in Rz due to symmetry. These elements, say, those
in the upper triangle, can be organized into a K(K+1)

2 × 1
vector rz:

rz = [rzz(0, 0), rzz(1, 0), . . . , rzz(K − 1, 0), . . . ...]T (14)

where rzz(i, j) = E{z(i)z(i+ j)}.
By mapping the elements between rz and vec{Rz}, it can

be shown that [11, Appendix A]

vec{Rz} = PKrz, rz = QKvec{Rz} (15)

where PK ∈ {0, 1}K
2×K(K+1)

2 and QK ∈ {0, 1/2, 1}
K(K+1)

2 ×K2

are the mapping matrices.
Putting together (6), (13) and (15), one has

rz = QKvec{Rz} = QK(A⊗A)P̄N︸ ︷︷ ︸
:=Φ

rx, (16)

where Φ is of size K(K+1)
2 ×N . When K(K+1)

2 ≥ N and A
is properly chosen to ensure that Φ is full rank, rx can be es-
timated via the least-squares solution. Further, if rx is sparse,
`1-norm penalty on rx can be imposed to ensure a sparse solu-
tion to rx. Once rx is estimated, Rx can be constructed from
(6) or by element-by-element mapping.

Summarizing, the sparse covariance of a stationary signal
can be estimated from compressive samples as follows:

minrx ‖sz −Φrx‖22 + λ‖w ∗ rx‖1 (17a)
s.t. vec{Rx} = P̄Nrx (17b)

Rx is p. s. d. (17c)

Here, the known input sz is obtained from the sample co-
variance Sz according to (15), and A is assumed to have been
chosen properly to ensure full-rankness of Φ. This is a con-
vex problem that can be readily solved. Because Rx is recon-
structed from the estimate of rx, the special Toeplitz structure
of Rx has been explicitly incorporated. Different from (12),
we choose w according to choice (iii) by first estimating sx
using least squares as ŝx = (ΦTΦ)−1ΦT sz , and then recon-
structing Sx.
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6. GAUSSIANITY, STATIONARITY, SPARSITY AND
COMPRESSIVE SAMPLING

When all probabilistic structures of Gaussianity, Stationarity
and Sparsity are present in the random signals of interest, we
can combine these structural knowledge to improve the esti-
mation accuracy or reduce the sample sizes. This combination
has been reflected in the developed formula (7). We are further
motivated to utilize compressed sensing, which can reduce the
sampling rate or the number of samples per block. By doing
so, even when the sample size L is smaller than the signal
dimension N (thus causing the sample covariance Sx to be
rank-deficient), the compressed sample covariance Sz of size
K ×K may still be full rank, provided that the compression
ratio K/N is chosen such that K ≤ L.

By jointly considering the design objectives and con-
straints in (7) and (17), we reach a sparsity-enforcing maxi-
mum likelihood estimator from the compressive samples of a
Gaussian stationary signal, as follows:

(r̂(t)x , ŝ(t)x ) = arg min
(rx,sx)

(
vec
{

(R̂(t−1)
x )−T

})T
P̄Nrx

+tr(H−1
x Gx) + λ||w ∗ rx||1 + ρ‖sz −Φrx‖22 (18a)

s.t. vec{Rx} = P̄Nrx (18b)
Rx,Gx are p. s. d. (18c)

Here, Gx := [H1sx H2sx · · · HNsx] and
Hx := [H1rx H2rx · · · HNrx],
where Hi := P̄N ((i− 1)N + 1 : iN, 1 : N).

In (18), the uncompressed sample covariance quantity sx
is a nuisance parameter that is used to find the desired pa-
rameter rx from the available compressed sample covariance
vector sz . An alternating direction method of multipliers can
be devised to solve for sx and rx via an iterative procedure.

7. COMPARATIVE STUDY

To compare the different techniques, we generate observa-
tion data samples from a zero-mean multivariate Gaussian dis-
tribution with covariance matrix Rx, where Rx is of size
N × N . Rx is chosen such that it is symmetric, positive
definite, Toeplitz and sparse. According to our model, the
locations of the unique non-zero entries in the first row of Rx

(i.e, rxx(i) where i = 0, 1, 2, · · · , N − 1) are chosen for a
given sparsity level. Their values are chosen randomly, ac-
cording to N (0, 1). We choose to find suitable values of λ
via cross validation [13] to optimize our performance metric,
which is chosen to be the root mean-square error (RMSE),
||R̂x−Rx||F /N averaged over 100 realizations. We setN =
32, the sparsity of Rx to be 25%, andNL = 512, whereNL is
the total number of samples. It is given byNL = L×K in the
compressive sampling case, and NL = L×N in the uncom-
pressed case. All the convex formulations are solved using the
CVX Matlab package [14], except (3) which is solved using
the majorization-minimization algorithm of [5].
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Fig. 1. RMSE as a function of compression ratio, K/N , for N = 32
and NL = KL = 512.

Compressive Sampling: In Fig. 1, (17) performs better
compared to (12) for all compression levels, showing the ad-
vantage of incorporating stationarity in the estimator. The best
performance of (17) is achieved at 50% compression, which
indicates the best tradeoff between improvement due to in-
creased sample size, and degradation due to increased com-
pression. Interestingly, the performance of (12) remains al-
most constant for the different compression levels.

Gaussianity: The sample size is fixed at L = 16 when
solving (3), corresponding to the data-starved case. On the
other hand, the sample size L = NL/K varies when solv-
ing (17), depending on the varying compression ratio K/N .
The Gaussianity case incorporates the knowledge of the data
distribution, while the compressed sensing case allows for a
larger sample size. For the chosen parameters, Gaussianity
yields better accuracy. Almost identical result is achieved by
(7). This is not surprising, since both (3) and (7) is based on
the same convex objective function, and (3) implicitly incor-
porates the Toeplitz structure in its penalty matrix W.

8. SUMMARY

We have developed several techniques to estimate the covari-
ance matrix of random signals based on the exploitation of
three different structures in the data: Gaussianity, stationar-
ity, and compression. Relative performance evaluation shows
that joint use of Gaussianity and Toeplitz symmetry is crucial
to achieving accurate estimates.

In our future work, we would like to study estimators that
exploit all of the four structures in the data mentioned above.
We are also interested in generalizing our study to nonstation-
ary and cyclostationary data models. In particular, we are in-
terested to explore other statistical structures and properties
that can help enhance estimation performance.
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