
COMPRESSED SENSING WITH CORRUPTED PARTICIPANTS

Meng Wang⋆, Weiyu Xu†, Robert Calderbank♯

⋆ Dept. of ECSE, Rensselaer Polytechnic Institute, Troy, NY. † Dept. of ECE, University of Iowa, Iowa City, IA.
♯ Dept. of Electrical Engineering, Duke University, Durham, NC.

ABSTRACT

Compressed sensing (CS) theory promises one can recover
real-valued sparse signal from a small number of linear mea-
surements. Motivated by network monitoring with link fail-
ures, we for the first time consider the problem of recovering
signals that contain both real-valued entries and corruptions,
where the real entries represent transmission delays on nor-
mal links and the corruptions represent failed links. Unlike
conventional CS, here a measurement is real-valued only if
it does not include a failed link, and it is corrupted other-
wise. We prove that O((d + 1)max(d, k) logn) nonadaptive
measurements are enough to recover all n-dimensional sig-
nals that contain k nonzero real entries and d corruptions. We
provide explicit constructions of measurements and recovery
algorithms. We also analyze the performance of signal recov-
ery when the measurements contain errors.

Index Terms— compressed sensing, group testing, funda-
mental limits, network tomography, corruptions.

1. INTRODUCTION

Compressed sensing (CS) [1–4] indicates that if an n-
dimensional signal is k-sparse, i.e., it only has k nonzero
entries, then one can efficiently recover the signal from
O(k log(n/k)) nonadaptive linear measurements. Network
tomography [5–10] attempts to infer system internal char-
acteristics (e.g., link queueing delays) of the Internet from
indirect end-to-end (aggregate) measurements (e.g., path
delay measurements). Since only a small number of bottle-
neck links experience large delays, some recent papers like
[11–14] have considered the application of CS in network
tomography, where the goal is to recover real-valued sparse
link delays from a small number of path delay measurements.

In communication networks, a link between two routers
may fail either temporarily or permanently. If a link fails, all
the packets that travel through it will be lost. Link failure
localization has been extensively investigated, e.g., [15–18],
where one attempts to locate the failed links from boolean
path measurements. A path measurement is a “success” if
it does not pass any failed links. Otherwise, it is treated as
a “failure”. This is a group testing (GT) problem [19], see
[20–23] as some recent examples of a rich literature.

We propose to locate the failed links and recover the trans-
mission delays on normal links simultaneously from a set of
nonadaptive path measurements. A path measurement is a
“failure” if it includes at least one failed link, since its pack-
ets will be lost. Otherwise, we obtain the real-valued path
delay which is the sum of the link delays of links it passes
through. We assume that the number of failed links and the
number of nonzero link delays are both small. As far as we
know, recovering sparse signals that contain failures is a new
problem and has not been systematically addressed before.

We for the first time consider the problem of recover-
ing sparse signals that contain corruptions and formulate it
into a combined CS and GT problem (Section 2). We pro-
vide bounds of the number of measurements needed to re-
cover such signals (Theorem 2) and compare it with CS and
GT (Table 1). We provide explicit measurement construction
method as well as efficient recovery algorithms (Section 3).
When the measurements are erroneous, the number of mea-
surements needed is also characterized (Section 4).

2. PROBLEM FORMULATION

Let x ∈ R̄
n (R̄ = R ∪ ∞) denote the unknown signal to

recover. ∞ indicates a corruption. Let y = Mx denote ob-
tained measurements, where Mm×n is the measurement ma-
trix. If xj = ∞, then yi = ∞ for all i such that Mij 6= 0. Set
F(y) := {i ∈ [[m]] : yi = ∞} denotes corrupted measure-
ments. Note that in conventional CS, x, y are real vectors.

[[q]] (q ∈ N) represents the set {1, ..., q}. For set S ⊆ [[q]],
|S| denotes its cardinality, and Sc denotes its complimentary
set in [[q]]. Given S ⊆ [[n]] and M , let N (S) := {i ∈ [[m]] :
∃j ∈ S, s.t. Mij 6= 0} denote the set of indices of measure-
ments that passes through at least one entry in S, let N c(S)
denote its complimentary set. For set A and B, A∪B denotes
the union and A\B contains elements that are in A but not in
B. Given matrix M , MAB denotes the submatrix with row
indices in A and column indices in B.

Definition 1. x ∈ R̄
n is d-corrupted k-sparse(simplified as

(d,k)-type) if |S| ≤ d and |T | ≤ k, where S = {j | xj = ∞}
and T = {j | 0 < |xj | < ∞}.

Definition 2. Matrix Mm×n is called (d,k)-type identifiable
if and only if for every two (d,k)-type vectors x and z such
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Table 1. Number of nonadaptive measurements
d corruptions O(d2 logn) [21, 23]

k-sparse real signals O(k logn) [1, 2, 4]
(d, k)-type signals O((d+1)max(d, k) log n) (here)

that x 6= z, it holds that Mx 6= Mz.

A (d,k)-type vector indicates that there are at most d failed
links and at most k links with nonzero transmission delays.
Throughout the paper, we consider the “for all” performance
that requires M to identity all (d,k)-type vectors.

For example, consider matrix

M =









1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1









One can check that M can identify all 2-sparse signals in R5

when there is no corruption, i.e., M is (0, 2)-type identifi-
able. However, when there exists one corruption, e.g., x =
[0, 0.5,∞, 0, 0]T , we have y = Mx = [0.5,∞,∞, 0]T . Al-
though from y and M , we can infer that x3 = ∞ and lo-
cate the corruption, we cannot decide whether x1 = 0.5 or
x2 = 0.5. Thus, M is not (1,1)-type identifiable.

When d = 0, the problem reduces to CS problem where
one aims to recover k-sparse signals. When k = 0, it reduces
to the GT problem where one wants to locate d failures from
boolean measurements. Here we need to not only locate the
d corruptions but also recover the uncorrupted values, among
which at most k entries are non-zero. Table 1 compares our
result here on the number of measurements needed with ex-
isting results in GT and CS. The results in GT and CS can be
viewed as special cases for our generalized result.

We remark that the Choir code in [24] is (1, k)-identifiable
for some k. But the construction is not directly extendable
to general d and does not attempt to reduce m (m = n in
[24]). Here for any given n, d, and k, we want to design
(d, k) identifiable M with m as small as possible.

We first introduce disjunct matrices in GT and expanders
in CS that will be useful for our analysis.

Definition 3 (Disjunct matrices). M is called (d, e)-disjunct
if for every S ⊆ [[n]] and every i ∈ [[n]] such that i /∈ S and
|S| ≤ d, |N (i)\N (S)| > e holds.

A (d, 0)-disjunct matrix is called d-disjunct for simplifi-
cation. One can locate up to d corruptions with a d-disjunct
matrix [21]. The locating algorithm is simple [21]: xj is iden-
tified to be corrupted if and only if N (j) ⊆ F(y).

We remark that a (d+ 2k)-disjunct matrix is a (d,k)-type
identifiable, and one can construct a (d+ 2k)-disjunct matrix
with O((d+2k)2 logn) measurements [21,23]. This number
is larger than our result in Table 1 when k >> d. We focus
on the region that n >> k >> d in this paper.

Given 0-1 matrix M , let γl = minj∈[[n]] |N (j)| and γu =
maxj∈[[n]] |N (j)| denote the minimum and maximum number
of non-zero entries in a column. Given T ⊆ [[n]], E(T ) :=
∑

j∈T |N (j)| measures the total number of nonzero entries
in the columns in T .

Definition 4 (Expander). M corresponds to a (k, δ, γl, γu)-
expander (δ ∈ (0, 1)) if |N (T )| ≥ (1 − δ)E(T ) for every
T ⊆ [[n]] with |T | ≤ k.

We say M corresponds to a (k, δ, γ)-expander if γl =
γu = γ. If M corresponds to a (2k, δ, γl, γu)-expander for
δγu/γl < 1/6 [25], then one can correctly recover k-sparse
signals via ℓ1-minimization, which returns the vector with the
least ℓ1-norm among all the vectors that can produce the ob-
tained measurements. There exist both random and explicit
constructions of expanders.

Proposition 1. [26] For any 1 ≤ k ≤ n/2, ǫ > 0, one can
explicitly construct a (k, ǫ, γ)-expander with m = kγ/ǫO(1)

and γ = 2O((log(log(n)/ǫ))3).

3. RECOVERY OF CORRUPTED SPARSE SIGNALS

In network tomography,Mm×n is naturally a 0-1matrix since
a path delay measurement is an aggregate sum of the corre-
sponding link delays. A lower bound of m for 0-1 matrix M
to be (d,k)-type identifiable is stated as follows.

Proposition 2. A 0-1 (d,k)-type identifiable matrix M has at
least [d log(n/d) + k log((n− d)/k)]/ log(k + 2) rows.

Proof. Consider (d,k)-type vectors that all the non-zero finite
values are ‘1’. There are A :=

∑d
i=1

∑k
j=1

(

n
i

)(

n−i
j

)

such
vectors. In this case, each measurement could be an integer
from 0 to k, or ∞. There are at most B := (k+2)m possible
outcomes. We need B ≥ A, and the claim follows.

Next we consider the upper bounds of the number of mea-
surements needed. We start with a sufficient condition for
(d,k)-type identifiable matrices.

Definition 5. M is called as G(d, 2k, δ, γl, γu) if for every
S ⊆ [[n]] with |S| ≤ d, there exists G ⊆ N c(S) such that the
submatrix M ′ = MGSc is a (2k, δ, γl, γu)-expander.

Theorem 1. A G(d, 2k, δ, γl, γu) matrix M is (d,k)-type iden-
tifiable if δγu/γl < 1/6.

Proof. Since γl > 0, M is d-disjunct, and one can cor-
rectly identify up to d corruptions. Since there always ex-
ist some uncorrupted measurements that correspond to a
(d, 2k, γl, γu)-expander, then all the real-valued entries can
be correctly recovered via ℓ1-minimization.

One important property for G(d, 2k, δ, γl, γu) matrices is
that we have a polynomial algorithm for recovering x. The
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Algorithm 1 Recovery algorithm for error free case
Input: y, M

1 ∀i, xi is identified as corrupted iff N (i) ⊆ F(y).
2 Let D be the set of identified corruptions. R = N c(D).
3 xr = augminz ‖z‖1 s.t. MRDcz = yR.
4 Return: Corruptions D, uncorrupted values xr.

recovery algorithm is summarized in Algorithm 1. It first
applies the identification algorithm in GT to locates up to d
corruptions, which takes time O(nm). Then it recovers the
uncorrupted real values with ℓ1-minimization, which has run-
ning time O(n3). For comparison, a combinatorial search al-
gorithm to recover x takes time O(nO(d+k)).

Now we present one main result regarding the number of
measurements needed for M to be G(d, 2k, δ, γl, γu).
Theorem 2. Mm×n is a 0-1 matrix with i.i.d. entries Mij ,
and P (Mij = 1) = p = δ/max(d, 2k), where constant δ ∈
(0, (

√
73 − 7)/12). If m = O(dmax(d, k) logn), then with

probability 1 − o(1), M is G(d, 2k, δ, γl, γu) with δγu/γl <
1/6, and is thus (d,k)-type identifiable.

Proof. Pick any ǫ ∈ (0, 1). Let Im denote the event that for
every set S ⊆ [[n]] with |S| ≤ d, it holds that (1) |N c(S)| ≥
(1 − ǫ)(1 − p)dm, and (2) for a fixed G ⊆ N c(S) with
|G| = (1− ǫ)(1− p)dm, MGSc corresponds to a (2k, δ, (1−
δ)p|G|, (1 + δ)p|G|)-expander.

Since δ(1+δ)/(1−δ) < 1/6 from the assumption, clearly
if Im happens, the claim holds. We will prove that when m is
as stated, Pr[Im] goes to 1 as n goes to infinity.

Given S with |S| = s, let Fs denote the event that
|N c(S)| ≥ (1− ǫ)(1− p)dm holds. Given G ⊆ N c(S) with
|G| = r, let Er denote the event that MGSc corresponds to
a (2k, δ, (1 − δ)p|G|, (1 + δ)p|G|)-expander. Since M has
i.i.d. entries, once s and r are fixed, Pr[Fs] and Pr[Er ] do
not depend on S and G. From the union bound,

Pr[Icm] ≤
d

∑

s=1

(

n

s

)

(

Pr[F c
s ] + Pr[Ec

(1−ǫ)(1−p)dm]
)

. (1)

We will next calculate Pr[Icm]. The following form of
Chernoff bound [27] is applied in our analysis.

Lemma 1. Let X be the sum of n independent random vari-
ables xi ∈ {0, 1}, and let µ be its expectation. ∀δ ∈ (0, 1),

Pr[X > (1+δ)µ] ≤ e−
δ2µ
3 , and Pr[X < (1−δ)µ] ≤ e−

δ2µ
2 .

Given S with |S| = s ≤ d, from Lemma 1, we have

Pr[F c
s ] ≤ Pr[F c

d ] ≤ e−ǫ2(1−p)dm/2. (2)

Given G ⊆ N c(S) with |G| = r, let Dr denote the event that
the number of nonzero entries in every column of MGSc is in
[(1− δ)pr, (1 + δ)pr]. From Lemma 1 and the Union bound,

Pr[Dc
r] ≤ ne−δ2pr/3 + ne−δ2pr/2 ≤ 2ne−δ2pr/3. (3)

Given T ⊆ Sc with |T | = t, from Lemma 1, we have

Pr[|N (T )| ≤ (1 − δ/8)[1− (1− p)t]r] ≤ e
−δ2[1−(1−p)t]r

128 ,
(4)

Pr[E(T ) ≥ (1 + δ/8)ptr] ≤ e−δ2ptr/192, (5)

where N (T ) and E(T ) are defined respect to matrix MGSc .
Since p = δ/max(d, 2k), through Taylor expansion, one can
check that for all t ≤ 2k, it holds that

(1− δ/8)[1− (1 − p)t]r ≥ (1 − δ)(1 + δ/8)ptr. (6)

From (4) to (6) and the Union bound, we have

Pr[|N (T )| ≤ (1− δ)E(T ), given T ] ≤ e−c1δ
2p|T |r, (7)

where c1 is a constant independent of δ1, p, k, and n.
From the Union bound, we have

Pr[Ec
r ] ≤ Pr[Dc

r] +
2k
∑

t=1

(

n

t

)

Pr[|N (T )| ≤ (1− δ)E(T ),

given T with |T | = t]

≤ 2ne−δ2pr/3 +

2k
∑

t=1

et(log(n/t)+1)−c1δ
2ptr, (8)

where the second inequality follows from (3) and (7).
Plugging (8) and (2) into (1), we have Pr[Icm] → 0 when

n → ∞, provided that

m ≥ 2(d log(n/d) + logn)/(p(1− ǫ)(1 − p)dδ2).

Since p = δ/max(d, 2k), then (1− p)d ≥ 1/4. Then when

m ≥ 8max(d, 2k)(d log(n/d) + logn)/δ3,

with probability 1− o(1), M is (d,k)-type identifiable.

Theorem 2 indicates that a randomly generated 0-1 matrix
with O((d + 1)max(d, k) logn) measurements is (d,k)-type
identifiable with high probability. We compare this result with
exiting ones in CS and GT in Table 1. We next provide an ex-
plicit measurement construction method based on expanders.

Theorem 3. M is (d,k)-type identifiable if it corresponds to
a (d+ 2k, ǫ/d, γ)-expander with ǫ(d+1)

d−ǫ(d+1) < 1/6.

Proof. ∀S with |S| = s ≤ d, and ∀T ⊆ Sc with |T | = t ≤
2k, from the expansion property and |N (S)| ≤ sγ, we have

|N (S ∪ T )| − |N (S)| ≥ (1− ǫ(d+ 1)/d)tγ. (9)

Then the number of non-zero entries in each column i in
MN c(S)Sc is between (1− ǫ(d+ 1)/d)γ and γ.

Since MNc(S)T has at most tγ non-zero entries, from

(9) one can check that MN c(S)Sc is a (2k, ǫ(d+1)
d , (1 −

ǫ(d+1)
d )γ, γ)-expander. The claim follows.

From Theorem 3 with Proposition 1, an explicit con-
struction of (d,k)-type identifiable matrix uses O(dO(1)(d +

2k)2O((d log(log(n)/ǫ))3)) measurements, and this number is
larger than that in Theorem 2 with random construction.
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Algorithm 2 Recovery algorithm for up to h errors
Input: y, M

1 For each S ⊆ [[n]] with |S| ≤ d, if |N (S)\F(y)| +
|F(y)\N (S)| ≤ h, S is the set of corruptions, denoted
by D.

2 R = [[n]]\(N (D) ∪ F(y)), Mr = MRDc .
3 xr = augminz ‖z‖1 s.t. Mrz = yR.
4 Return: Corruptions D, uncorrupted values xr.

4. ERRONEOUS MEASUREMENTS

We next consider the case the measurements contain errors.
Let αT

i denote the ith row of M . We consider two types of
errors: (1) yi = ∞ when α

T
i x ∈ R, and (2) yi ∈ R when

α
T
i x = ∞. We assume that the total number of these two

types of errors is at most h, and these errors can happen at
arbitrary unknown locations. The goal is to design measure-
ment matrix M such that all (d, k)-type signals can be cor-
rectly recovered no matter where the h errors are.

If M is a (d, 2h + 1)-disjunct matrix, then one can iden-
tify d corruptions in the presence of at most h errors [21].
Then one sufficient condition for identifying (d,k)-type sig-
nals from measurements that contain h errors is as follows,

Proposition 3. If M is (d, 2h+ 1)-disjunct, and for every S
of up to d corruptions and for every H with up to h errors,
there exists G ⊆ [[m]]\(N (S)∪H) s.t. MGSc corresponds to
a (2k, δ, γl, γu)-expander with δγu/γl < 1/6, then all (d, k)-
type signals can be recovered in the presence of h errors.

The proof follows clearly from previous discussions and
is skipped. The recovery algorithm for such matrices is stated
in Algorithm 2. We prove that these matrices can be obtained
through random construction with the same probability p as
that in Theorem 2. The bound of the number of measurements
needed is as follows.

Theorem 4. One can identify all (d,k)-type signals from m =
O(max(d, k)(d log n+h log(max(d, k))+h log logn) mea-
surements that contain h errors in arbitrary locations.

Proof. The proof follow the same line as that for Theorem
2, and we skip the details. Let Îm denote the event that for
every set S with |S| ≤ d and every set H with |H | ≤ h,
(1) N c(S) ≥ (1 − ǫ)(1 − p)dm, (2) MN c(S)Sc has at least
(1 − δ)p(1 − ǫ)(1 − p)dm nonzero entries in each column,
(3) MG′Sc corresponds to a (2k, δ, (1− δ)pr′, [(1 + δ2)pr

′)-
expander for a fixed G′ in N c(S)\H with |G| = r′ = (1 −
ǫ)(1− p)dm− h entries. If Îm happens, and if it holds that

2h+ 1 ≤ (1 − δ)p(1− ǫ)(1− p)dm, (10)

then one can identify all (d,k)-type signals from m measure-
ments that contain at most h errors at arbitrary locations.

One can check that Pr[Îcm] → 0 when n → ∞ provided
that m is as stated in the Theorem. And (10) follows for this
choice of m. Then the claim follows.

5. NUMERICAL RESULTS
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Fig. 2. Recovery of sparse signals with corruptions

We fix n = 1000 and the number of ‘1′s in each column
of M to be 5, and randomly generate a 0-1 matrix M with
m = 600 and m = 800 respectively. We first consider the
performance of identifying corruptions in Fig. 1. For each
d, we randomly choose the locations of the corruptions, and
the results are averaged over 500 runs. When m = 600, 10
corruptions can be correctly identified.

In Fig. 2, we fix d and increase the number of non-zero en-
tries k. The locations of corruptions and non-zero entries are
randomly chosen, and non-zero entries are sampled as i.i.d.
Gaussian random variables. Algorithm 1 is applied to recover
(d,k)-type signals. Let x∗ contain the uncorrupted entries,
and let xr denote our reconstruction. ‖x∗ − xr‖2/‖x∗‖2 is
the normalized recovery error of the uncorrupted part. The
results are averaged over 100 runs. When m = 600, we can
recover all (5, 220)-type signals or all (10, 200)-type signals.

6. CONCLUSION

We considered recovering sparse link delay values from path
delay measurements in the presence of link failures and for
the first time formulated it into a CS problem with corrup-
tions. We provided bounds of the number of nonadaptive
measurements needed to identify both corruptions and real
entries. Explicit constructions and efficient recovery algo-
rithms are also provided. One ongoing work is to explore
construction methods with fewer measurements.
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