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ABSTRACT

We consider vector-quantized (VQ) transmission of compressed
sensing (CS) measurements over noisy channels. Adopting mean-
square error (MSE) criterion to measure the distortion between a
sparse vector and its reconstruction, we derive channel-optimized
quantization principles for encoding CS measurement vector and
reconstructing sparse source vector. The resulting necessary optimal
conditions are used to develop an algorithm for training channel-
optimized vector quantization (COVQ) of CS measurements by
taking the end-to-end distortion measure into account.

Index Terms— Channel-optimized vector quantizer, com-
pressed sensing, sparsity, channel, mean-square error

1. INTRODUCTION

Compressed sensing (CS) [1] is a tool to retrieve a high-dimensional
(nearly) sparse signal vector from low-dimensional measurement
vector. In practical applications, CS measurements are required to
be quantized into a finite-resolution representation, and then com-
municated to a destination point through a noisy channel for sparse
signal reconstruction. Quantization and transmission errors are chal-
lenges imposed by practical systems, therefore, a robust approach
against these imperfections is a fundamental design requirement
which is taken in this paper.

Recently, significant research interest has been devoted to anal-
ysis and design of quantized transmission of CS measurements, and
a wide range of interesting problems has been formulated. The ex-
tension of CS reconstruction methods in order to degrade the effect
of quantization error has been considered in [2–7], while in [8–12],
the design of quantizers under fixed CS reconstruction methods has
been studied. Further, theoretical bounds on distortions caused by
CS reconstruction and quantization have been derived in [5, 13, 14].

All of the aforementioned works are dedicated to pure source
coding of CS measurements in which quantized transmission is as-
sumed to be error-free. In practice, communication channel errors
are often inevitable, and need to be considered through a quantizer
design. To the best of our knowledge, quantized transmission of CS
measurements over noisy channels has not been addressed. There-
fore, in this paper, we consider a linear CS system where a random
sparse source is compressed, and the resulting noisy CS measure-
ments are quantized, transmitted over a discrete memoryless chan-
nel (DMC), and finally reconstructed at a receiving-end. The main
contributions of the paper are twofold: first, we aim to find nec-
essary optimal quantizer encoding and decoding principles with re-
spect to minimizing average end-to-end mean-square error (MSE) in
the presence of channel imperfections. Second, we use the necessary

X Φ
Y

W

E

C

I J
P (j|i)

Channel
Quantizer
encoderCS encoder Decoder

D X̂

Fig. 1. Studied system model.

optimal conditions, and propose a training algorithm in order to de-
sign a channel-optimized vector quantizer (COVQ) for CS by taking
the end-to-end distortion criterion into consideration. We examine
the performance of our proposed algorithm through simulation, and
show its gain by comparing it vis-a-vis existing schemes for quanti-
zation of CS measurement vector.

Notations: scalar random variables (RV’s) will be denoted by
upper-case letters while their instants will be denoted by the respec-
tive lower-case letters. Random vectors will be represented by bold-
face characters. Further, a set is shown by a calligraphic character
and its cardinality by | · |. We will also denote the transpose of a
vector by (·)T . We will use E[·] to denote the expectation operator.
The ℓp-norm (p ≥ 0) of a vector will be denoted by ‖ · ‖p.

2. SYSTEM DESCRIPTION

In this section, we give an account for the basic assumptions and
models made about the studied system depicted in Figure 1.

2.1. CS Framework

Formally, we let a random sparse vector (where most coefficients
are likely zero) X ∈ R

M be linearly encoded using a known sensing
matrix Φ ∈ R

N×M (N < M ) which results in an under-determined
set of linear measurements, possibly perturbed by noise, i.e.,

Y = ΦX+W, (1)

where Y ∈ R
N and W ∈ R

N denote the measurement and the
additive measurement noise vectors, respectively. We let X be an
exact K-sparse vector, i.e., it has exactly K (K < N ) non-zero
coefficients, where the location of non-zero’s are uniformly drawn
from all

(
M
K

)
possibilities, and these components are identically and

independently distributed (i.i.d.) standard Gaussian RV’s. We also
assume that the sparsity level K is known in advance. We define the
support set of the sparse vector X = [X1, . . . , XM ]T as S , {m :
Xm 6= 0} ⊂ {1, . . . ,M} with |S| = ‖X‖0 = K. The elements
of the sensing matrix Φij are i.i.d. RV’s drawn from a Gaussian dis-
tribution (i.e., Φij ∼ N (0, 1/N)), where the columns of Φ are nor-
malized to unit-norm. Note that once Φ is generated, it remains fixed
and is made known to decoder. In order to reconstruct an unknown
sparse source X from a noisy under-sampled measurement vector Y,
several reconstruction methods have been developed based on con-
vex relaxation optimization problem (see e.g. [2, 15, 16]), iterative
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greedy search algorithms (see e.g. [17–20]) and Bayesian estimation
approaches (see e.g. [21–23]).

2.2. Vector Quantization over Noisy Channels

We consider the problem of vector quantization (VQ) of the linear
noisy CS measurement vector Y over a discrete memoryless channel
(DMC). We assume that the total bit budget allocated for quantiza-
tion is fixed at B bits per dimension of the source vector. Then,
given the noisy measurement vector Y, a VQ encoder is defined by
a mapping E : RN → I, where I is a finite index set defined as
I , {0, 1, . . . , 2B − 1} with |I| , L = 2B . Denoting the quan-
tized index by I , the encoder works according to Y ∈ Ri ⇒ I = i,
where the sets {Ri}

L−1
i=0 are (possibly disconnected) encoder regions

and
⋃L−1

i=0 Ri = R
N such that when Y ∈ Ri the encoder outputs

the index E(Y) = i ∈ I.
Next, we consider a DMC which accepts the encoded index i,

and outputs a noisy symbol, denoted by j. The channel is defined by
a random mapping I → I characterized by transition probabilities

P (j|i) , Pr(J = j|I = i), i, j ∈ I, (2)

which indicates the probability that index j is received given that the
input index to the channel was i. We assume that the transmitted
index i and the received index j share the same index set I, and
the channel transition probabilities (2) are known in advance. Given
the received index j, a combined VQ/CS decoder is characterized
by a mapping D : I → C where C is a finite discrete codebook set
containing all reproduction codevectors {cj ∈ R

M}L−1
j=0 . Then, the

decoder’s functionality is described by a look-up table; J = j ⇒

X̂ = cj such that when the received index from the channel is j,
then the decoder outputs the codevector D(j) = cj ∈ C.

It is important to design an encoder-decoder pair in order to min-
imize a distortion measure which reflects the need of the receiving-
end user. Therefore, we quantify the performance of our studied
system in Figure 1 by the end-to-end MSE defined as

D , E[‖X− X̂‖22]. (3)

Note that the end-to-end MSE depends on CS reconstruction errors,
quantization errors as well as channel errors, and our goal is to de-
sign an encoder/decoder pair which is robust against all three kinds
of error.

3. DESIGN PROBLEM

In this section, we first mention the objectives, and then present our
proposed approach and algorithm to address the design problem.

3.1. Objectives

We consider an optimization technique for the system illustrated in
Figure 1 in order to determine the encoder and decoder mappings E
and D, respectively, in the presence of channel error. More precisely,
the aim of the VQ design is to find MSE-minimizing encoder regions
{Ri}

L−1
i=0 and decoder codebook C = {cj}

L−1
j=0 . On the other hand,

a joint design of encoder and decoder cannot be implemented since
the resulting optimization is analytically intractable. To address this
issue, in Section 3.2, we show how the encoding index i ∈ I (or
equivalently encoder region Ri) can be chosen to minimize the MSE
for given values of codevectors {cj}

L−1
j=0 . Then, in Section 3.3, we

derive an expression for the optimal decoder codebook (with respect
to minimizing (3)) for given encoder regions. Thereafter, in Sec-
tion 3.4, we develop a VQ training design algorithm that combines
the resulting necessary optimal rules.

3.2. Optimizing for Fixed Decoder Codebook

First, let us introduce the minimum mean-square error (MMSE) esti-
mator of the sparse input vector in the linear system model (1) which
is obtained as (see e.g. [24, Chapter 11])

x̃(y) , E[X|Y = y] ∈ R
M . (4)

Now, assume that the decoder codebook C = {cj}
L−1
j=0 is known

and fixed, then we focus on how the encoding index i should be
chosen to minimize the MSE given the observed measurement vector
y = Ax+w. We rewrite the MSE in (3) as

D , E[‖X− X̂‖22] = E[‖X − cJ‖
2
2]

(a)
=

∫

y

∑

i∈I

Pr{I= i|Y=y}E
[
‖X−cJ‖

2
2|Y=y, I= i

]
f(y)dy

(b)
=

∑

i∈I

∫

y∈Ri

{
E
[
‖X− cJ‖

2
2|Y = y, I = i

]}
f(y)dy,

(5)
where (a) follows from marginalization of the MSE over RV’s Y

and I . Further, f(y) is the N -fold probability density function
(p.d.f.) of the measurement vector. Also, (b) follows by inter-
changing the integral and summation and the fact that Pr{I =
i|Y = y} = 1, ∀y ∈ Ri, and otherwise the probability is zero.
Now, in order to minimize the MSE for given codevectors, it suffices
to minimize the expression in the braces in the last expression of
(5) since f(y) is positive. Then, the MSE-minimizing transmission
index, denoted by i⋆ ∈ I, is given by

i⋆ = arg min
i∈I

E
[
‖X − cJ‖

2
2|Y = y, I = i

]

(a)
= arg min

i∈I
E[‖cJ‖

2
2|Y=y, I= i]−2E[XT

cJ |Y=y, I= i]

(b)
= arg min

i∈I
E[‖cJ‖

2
2

∣∣I = i]− 2E[XT
∣∣Y = y]E[cJ

∣∣I = i],

(6)
where (a) follows from the fact that X is independent of I , con-
ditioned on Y, hence, E

[
‖X‖22|Y=y, I= i

]
= E

[
‖X‖22|Y=y

]

which is pulled out of the optimization. (b) follows from Markov
chains Y → I → cJ and X → Y → I . Next, note that introducing
channel transition probabilities (2) and the MMSE estimator (4), the
last equality in (6) can be expressed as

i⋆ = arg min
i∈I

{
L−1∑

j=0

P (j|i) ‖cj‖
2
2 − 2x̃(y)T

L−1∑

j=0

P (j|i)cj

}

. (7)

It is also straightforward to show that in the case of error-free
channel (P (j|i) = 0, ∀i 6= j ∈ I), given the observations y and
a noiseless channel, the quantizer encoder that minimizes the MSE
(assuming known codevectors) is given by

i⋆ = arg min
i∈I

{
‖ci‖

2
2 − 2x̃(y)Tci

}
. (8)

3.3. Optimizing for Fixed Encoding Regions

Adopting the MSE criterion, it is straightforward to show the code-
vectors which minimize D in (3) are obtained by letting cj represent
the MMSE estimator of the vector X based on the received index j,
that is, cj should be chosen as

c
⋆
j = E[X|J = j], j ∈ I. (9)
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Now, let define

P (i),Pr(I= i)=Pr(Y∈Ri), P (j),Pr(J=j)=
∑

i

P (j|i)P (i),

P (i|j) , Pr(I = i|J = j) = P (j|i)P (i)/P (j),
(10)

then, the expression for c⋆j can be rewritten as

c
⋆
j = E[X|J = j] =

∑

i

P (i|j)E[X|J = j, I = i]

(a)
=

∑

i

P (i|j)E[X|I= i]
(b)
=

∑
i P (j|i)P (i)

∫
y
E[X|Y=y]f(y|i)dy

∑
i P (j|i)P (i)

(c)
=

∑
i P (j|i)

∫
Ri

x̃(y)f(y)dy
∑

i P (j|i)
∫
Ri

f(y)dy
,

(11)
where (a) follows from the Markov chain X → I → J , and (b)
from marginalization over Y, the Markov chain X → Y → I ,
and (10) which translates (a) to the known parameters. Moreover,
f(y|i) is the conditional p.d.f. of Y given that Y ∈ Ri. Also, (c)
is followed by (4) and by the fact that f(y|i) = 0 for y /∈ Ri.

As a special case where the channel is error-free (i.e., P (j|i) =
0, ∀j 6= i ∈ I), given the known encoding index, the MSE-
minimizing codebook, denoted by C⋆ = {c⋆i }

L−1
i=0 , must satisfy

c
⋆
i = E[X|I = i]. (12)

In general, it is not easy to derive closed form solutions for the
necessary optimality conditions (7) and (11). However, in practice,
since the alphabets of the set I are finite, these expressions can be
computed using a database. In the next section, we use these princi-
ples in order to design a training algorithm for the CS-VQ system.

3.4. Training Design Algorithm

The results presented in Section 3.2 and Section 3.3 can be utilized to
formulate an iterate-alternate training algorithm for the problem of
interest. Similar to the generalized Lloyd algorithm for noisy chan-
nels [25], we propose a VQ training method for the design problem
in this work which is summarized in Algorithm 1.

Algorithm 1 : Channel-optimized vector quantization training algo-
rithm for compressed sensing measurements

1: input: measurement vector: y, channel probabilities: P (j|i),
bit budget: B bit/dimesnion.

2: compute: x̃(y) in (4).
3: initialize: C = {cj}

L−1
j=0 where L = 2B

4: repeat
5: Update and fix the codevectors, then calculate the encoding

indexes using (7).
6: Update and fix the encoding indexes, then calculate the code-

vectors using (9).
7: until convergence
8: output: {Ri}

L−1
i=0 , C = {cj}

L−1
j=0

The following remarks can be considered for implementing Al-
gorithm 1. In step (1), besides the channel transition probabilities
P (j|i), we assume that the statistics of the sparse source are given.
In step (2), computing the optimal estimator x̃(y) in (4) is not practi-
cally feasible since the size of support set S increases exponentially
with size of the sparse source X (cf. [22]). Instead, we will approxi-
mate x̃(y) using the output of the low-complexity greedy orthogonal
matching pursuit (OMP) reconstruction algorithm [17, 18]. In step

(3), the codevectors can be initialized randomly. Convergence in step
(7) may be checked by tracking the MSE, and terminate the iterations
when the relative improvement is small enough. In principle (and
ignoring issues such as numerical precision), the iterative design in
Algorithm 1 always converges to a local optimum since when the
criteria in steps (5) and (6) of the algorithm are invoked, the perfor-
mance can only leave unchanged or improved, given the updated in-
dexes and codevectors. This is a common rationale behind the proof
of convergence for such iterative algorithms (see e.g. [26, Lemma
11.3.1]). However, nothing can be generally guaranteed about the
global optimality of this algorithm.

4. EXPERIMENTS AND RESULTS

4.1. Related Quantization Methods

In order to study the effect of inherent sparsity of the source and
channel errors on the VQ design for CS measurements, we introduce
two quantization schemes:

1. For a noisy channel, an alternative quantization is the use of
COVQ designed for the input vector Y (see [25] for details)
aiming to minimize the average quantization distortion when
sending Y over the channel. The design strategy of the en-
codeing/decoding rules is as follows: for a quantization rate
B bits/vector, and for a fixed codebook G, {gj ∈R

N}L−1
j=0 ,

where L = 2B , and known channel transition probability
P (j|i), a transmission index i♯∈I is chosen as

i♯ = arg min
i∈I

L−1∑

j=0

‖y−gj‖
2
2P (j|i). (13)

Now, for the given index characterized by (13) and channel
transition probability P (j|i), the MMSE reproduction code-
vectors (with respect to minimizing average quantization dis-
tortion) satisfy

g
♯
j = E[Y|J = j], j ∈ I. (14)

Similar to Algorithm 1, this procedure is alternated between
(13) and (14) and then iterated which converges to (locally)
optimum codevectors and indexes. Finally, a (suboptimal)
CS recovery algorithm (here OMP) takes the codevector as
an input and reconstruct the sparse source. As this scheme
exploit channel-optimized rules for minimizing only quanti-
zation distortion, we will label this method as “COVQ-Q” in
our experiments.

2. To study the effect of channel errors on the design, we exploit
channel-unoptimized VQ (CUVQ) which is indeed the case
where knowledge about channel condition is not provided at
the transmitter and receiver. For this scheme, the encoder in-
dex and decoder codevectors are obtained by (8) and (12),
respectively, in an iterate-alternate procedure similar to Algo-
rithm 1. We will refer to this method as “CUVQ-E2E” since
a designer is not aware of channel imperfections, but the end-
to-end distortion is considered.

4.2. Experimental Setups and Results

We examine the performance of the proposed algorithm using nor-
malized MSE (NMSE) defined as NMSE , 1

K
E[‖X − X̂‖22]. To

measure the level of under-sampling, we define the measurement
rate as α , N/M . We generate the Gaussian sparse source X, and
the sensing matrix model Φ as described in Section 2.1. In order
to focus on distortion due to quantization and channel, we assume
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Fig. 2. NMSE vs. measurement rate α=N/M .

that the additive measurement noise W in our linear model (1) is
negligible. Further, x̃(y) in (4) is (approximately) calculated by the
low-complexity OMP algorithm [17, 18]. We assume a binary sym-
metric channel (BSC) with bit cross-over probability ǫ specified by

P (j|i) = ǫHB(i,j)(1− ǫ)B−HB(i,j), (15)

where 0 ≤ ǫ ≤ 1/2 represents bit cross-over probability (assumed
known), and HB(i, j) denotes the Hamming distance between B-bit
binary codewords representing the channel input and output indexes
i and j. To evaluate the NMSE, we run Algorithm 1 for 105 trials
and average over the number of simulation rounds. We refer to our
proposed design as “COVQ-E2E” in the following results.

Using parameters of source vector size M = 20, sparsity
level K = 2 (sparsity ratio = 10%) and quantization rate B = 8
bits/dimension, we show performance comparison (in terms of
NMSE) for quantizer design methods in Figure 2 as a function
of measurement rate α, and the curves correspond to channel bit
cross-over probabilities ǫ = 0 and ǫ = 0.01. It can be seen as the
number of measurements increases, the performance improves due
to the fact that more measurements yield a more precise estimate of
the source at a fixed quantization rate B and cross-over probability
ǫ. At ǫ = 0, the COVQ-E2E and CUVQ-E2E designs coincide
as expected from theory. However, the COVQ-Q design does not
take into account the end-to-end distortion which yields to a poor
performance at low channel noise. At ǫ = 0.01, not surprisingly,
the COVQ-E2E outperforms the other ones. It is also revealed the
CUVQ-E2E design performs inferior to the COVQ-Q since it does
not consider channel transition probabilities. Using the proposed
COVQ-E2E design, we gain notable 4 dB improvement at α=0.5.

In order to investigate the effect of channel noise on the perfor-
mance at fixed measurement and quantization rates, we compare the
performance of the different quantization designs in Table 1 for var-
ious channel bit cross-over probabilities ǫ. As one would expect, the
COVQ-E2E design gives the best performance. Further, comparing
all methods together, it can be observed that the loss in the perfor-
mance of the CUVQ-E2E design grows substantially as the channel
becomes noisier. Thus, it can be concluded that the channel condi-
tion knowledge is crucial throughout the design procedure.

Next, we examine what the behavior of the performance would
be if we increase quantization rate. The parameters are chosen as
M = 20, K = 2 and α = 0.5, and we vary the quantization rate.
In Figure 3, we illustrate the performance of the design approaches

Table 1. Normalized MSE (in dB) vs. bit cross over probability ǫ
for M=20, K=2, B=8 bit/dimesnion and α=0.5.

ǫ 0 0.001 0.005
COVQ-E2E -5.9371 -5.7616 -5.3308
COVQ-Q -1.8357 -1.8262 -1.6737
CUVQ-E2E -5.9371 -4.7308 -2.7242

ǫ 0.01 0.05 0.1
COVQ-E2E -4.8947 -3.0293 -1.8257
COVQ-Q -1.5370 -0.8508 -0.4511
CUVQ-E2E -0.4334 4.7124 6.7608
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Fig. 3. NMSE vs. quantization rate B (bits/vector).

for bit cross-over probabilities ǫ = 0 and ǫ = 0.005. As expected,
the performance of the COVQ-E2E design is superior to that of the
COVQ-Q and CUVQ-E2E designs, where we can gain more than 3
dB improvement at high quantization rates. Not surprisingly, the per-
formance of the COVQ-E2E and CUVQ-E2E designs are the same
for an error-free channel. Further, the CUVQ-E2E design shows a
different behavior by increasing B at ǫ = 0.005. This is due to the
fact that at a fixed ǫ, although the quantization distortion decreases
as quantization rate increases, the probability of correct index recep-
tion decreases exponentially. Hence, the performance of the CUVQ-
E2E design, which is unaware of channel condition, considerably
degrades at high rates.

5. CONCLUSIONS

In literature, the problem of VQ design for CS measurements has
been addressed without considering channel noise. To the best of
our knowledge, this is the first time that channel imperfections have
been taken into account through the design of COVQ for CS mea-
surements. Adopting the end-to-end MSE criterion, we derive nec-
essary optimal encoding and decoding principles, and utilize these
conditions to develop an algorithm for training a COVQ for encod-
ing CS measurements and reconstructing a sparse source. Numerical
results have shown the promising performance gained by using our
proposed optimal design.
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[3] C. Güntürk, M. Lammers, A. Powell, R. Saab, and O. Ylmaz,
“Sigma delta quantization for compressed sensing,” in Annual
Conference Inf. Sciences and Systems, March 2010, pp. 1 –6.

[4] A. Zymnis, S. Boyd, and E. Candes, “Compressed sensing with
quantized measurements,” IEEE Sig. Proc. Lett., vol. 17, no. 2,
pp. 149 –152, Feb. 2010.

[5] W. Dai and O. Milenkovic, “Information theoretical and algo-
rithmic approaches to quantized compressive sensing,” IEEE
Trans. Commun., vol. 59, no. 7, pp. 1857 –1866, Jul. 2011.

[6] L. Jacques, D. Hammond, and J. Fadili, “Dequantizing com-
pressed sensing: When oversampling and non-Gaussian con-
straints combine,” IEEE Trans. Inf. Theory, vol. 57, no. 1, pp.
559 –571, Jan. 2011.

[7] M. Yan, Y. Yang, and S. Osher, “Robust 1-bit compressive
sensing using adaptive outlier pursuit,” IEEE Trans. Sig. Proc.,
vol. 60, no. 7, pp. 3868 –3875, July 2012.

[8] J. Sun and V. Goyal, “Optimal quantization of random mea-
surements in compressed sensing,” in IEEE Int. Symp. Inf. The-
ory, July 2009, pp. 6 –10.

[9] P. Boufounos, “Universal rate-efficient scalar quantization,”
IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1861 –1872, March
2012.

[10] U. Kamilov, V. Goyal, and S. Rangan, “Optimal quantization
for compressive sensing under message passing reconstruc-
tion,” in IEEE Int. Symp. Inf. Theory, Aug. 2011, pp. 459 –463.

[11] A. Shirazinia, S. Chatterjee, and M. Skoglund, “Performance
bounds for vector quantized compressive sensing,” in Int.
Symp. Inf. Theory and App., Oct. 2012, pp. 289–293.

[12] ——, “Analysis-by-synthesis-based quantization of com-
pressed sensing measurements,” in IEEE Int. Conf. Acoust.,
Speech, and Sig. Proc. (ICASSP), May 2013, to appear.

[13] V. Goyal, A. Fletcher, and S. Rangan, “Compressive sampling
and lossy compression,” IEEE Sig. Proc. Mag., vol. 25, no. 2,
pp. 48–56, March 2008.

[14] J. Laska and R. Baraniuk, “Regime change: Bit-depth versus
measurement-rate in compressive sensing,” IEEE Trans. Sig.
Proc., vol. 60, no. 7, pp. 3496 –3505, Jul. 2012.

[15] E. Candes and T. Tao, “Rejoinder: the Dantzig selector: sta-
tistical estimation when p is much larger than n,” Annals of
Statistics, vol. 35, pp. 2392 – 2404, 2007.

[16] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,”
IEEE Trans. Sig. Proc., vol. 56, no. 6, pp. 2346 –2356, Jun.
2008.

[17] J. Tropp and A. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Trans. Inf.
Theory, vol. 53, no. 12, pp. 4655 –4666, Dec. 2007.

[18] T. Blumensath and M. Davies, “Gradient pursuits,” IEEE
Trans. Sig. Proc., vol. 56, no. 6, pp. 2370 –2382, June 2008.

[19] W. Dai and O. Milenkovic, “Subspace pursuit for compres-
sive sensing signal reconstruction,” IEEE Trans. Inf. Theory,
vol. 55, no. 5, pp. 2230 –2249, May 2009.

[20] S. Chatterjee, D. Sundman, M. Vehkapera, and M. Skoglund,
“Projection-based and look-ahead strategies for atom selec-
tion,” IEEE Trans. Sig. Proc., vol. 60, no. 2, pp. 634 –647,
Feb. 2012.

[21] E. G. Larsson and Y. Selen, “Linear regression with a sparse
parameter vector,” IEEE Trans. Sig. Proc., vol. 55, no. 2, pp.
451 –460, Feb. 2007.

[22] M. Elad and I. Yavneh, “A plurality of sparse representations
is better than the sparsest one alone,” IEEE Trans. Inf. Theory,
vol. 55, no. 10, pp. 4701 –4714, Oct. 2009.

[23] M. Protter, I. Yavneh, and M. Elad, “Closed-form MMSE esti-
mation for signal denoising under sparse representation model-
ing over a unitary dictionary,” IEEE Trans. Sig. Proc., vol. 58,
no. 7, pp. 3471 –3484, July 2010.

[24] S. Kay, Fundamentals of Statistical Signal Processing: Esti-
mation Theory. Englewood Cliffs, NJ: Prentice Hall, 1993.

[25] N. Farvardin, “A study of vector quantization for noisy chan-
nels,” IEEE Trans. Inf. Theory,, vol. 36, no. 4, pp. 799 –809,
July 1990.

[26] A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression. Kluwer Academic Publishers, 1991.

4652


