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ABSTRACT

A fast matching pursuit method using a Bayesian approach is in-
troduced for block-sparse signal recovery. This method performs
Bayesian estimates of block-sparse signals even when the distribu-
tion of active blocks is non-Gaussian or unknown. It is agnostic to
the distribution of active blocks in the signal and utilizes a priori
statistics of additive noise and the sparsity rate of the signal, which
are shown to be easily estimated from data and no user intervention
is required. The method requires a priori knowledge of block parti-
tion and utilizes a greedy approach and order-recursive updates of its
metrics to find the most dominant sparse supports to determine the
approximate minimum mean square error (MMSE) estimate of the
block-sparse signal. Simulation results demonstrate the power and
robustness of our proposed estimator.

Index Terms— Block sparse signals, sparse signal recovery,
compressed sensing, Bayesian matching pursuit, SABMP

1. INTRODUCTION

The problem addressed by compressed sensing and sparse recovery
algorithms is to recover an unknown sparse vector from an underde-
termined system of linear equations. Sometimes the sparse signals
under consideration are structured in nature. Specifically, a natural
block structure might exist in the sparse signal where the few non-
zero elements appear in groups. For example, an ideal sparse chan-
nel consisting of a few multipath components could be represented in
a block sparse structure [1]. Some other interesting situations where
block sparsity arises include, gene expression analysis [2], time se-
ries data analysis involving lagged variables forming a block, multi-
ple measurement vector (MMV) [3], PAPR reduction in OFDM [4]
and neural activity [5]. It has been known that the block structure can
be exploited for enhanced recovery. Moreover, it was shown that if
knowledge of the block structure (expected locations where blocks
might occur and the block sizes) is available then under certain con-
ditions it allows us to reduce the number of observations required for
recovery [6].

Several algorithms have been proposed taking into account the
knowledge of the block structure. The foundational work in this
respect was [7] which proposed the group-LASSO algorithm. How-
ever, it has limited applicability as compared to other algorithms as
it makes some assumptions on the dictionary being used. Block-
OMP [8] is an extension of the classical orthogonal matching pursuit
algorithm (OMP [9]). It was proposed by Eldar et. al. where they
used the concept of block coherence to extend the OMP algorithm.

This work was supported by SABIC through an internally funded project
from DSR, KFUPM, Dhahran, Saudi Arabia (Project No. SB101006).

Another algorithm by Eldar called mixed `2/`1-norm recovery al-
gorithm proposed in [3] extended the BP method to tackle block
sparsity. Similarly, extensions of the CoSAMP algorithm [10] and
IHT [11] were used to propose an algorithm called Block-CoSAMP
[6] which has provable recovery guarantees and robustness proper-
ties. The LaMP algorithm proposed in [12] used Markov Random
Fields model to capture the structure of sparse signal. They demon-
strated that their algorithm performed well using fewer number of
measurements.

All of these methods mentioned above belong to the category of
greedy algorithms. Their advantage is that they are agnostic to sup-
port distribution1 and hence demonstrate robust performance. How-
ever, most of them work only in noiseless environment. Although
many Bayesian approaches (e.g., [13]) could be extended to utilize
block structure, these are not as common. A notable exception is the
cluster-sparse Bayesian learning algorithm (cluster-SBL) proposed
in [14] which assumes that the block supports follow a multivariate
Gaussian distribution. Furthermore, they take into account the intra-
block correlation to show that it improved the recovery performance.

The focus of the present paper is on developing a Bayesian ap-
proach for block-structured sparse signal recovery. Specifically, we
pursue a Bayesian approach similar to that proposed in [15] that
combines the advantages of the two approaches summarized above.
On the one hand, the approach is Bayesian, acknowledging the noise
statistics and the signal sparsity rate, while on the other hand, the
approach is agnostic to the signal support statistics (making it es-
pecially useful when these statistics are unknown or non-Gaussian).
While the approach depends on the sparsity rate and the noise vari-
ance, it does not require estimates of the parameters but is able to
estimate these parameters in a robust manner. Specifically, the ad-
vantages of our approach are as follows

1. The approach provides a Bayesian estimate of the sparse sig-
nal even when the signal support prior is non-Gaussian or un-
known.

2. The approach is agnostic to the support distribution and so the
parameters of this distribution whether Gaussian or not, need
not be estimated. This is particularly useful when the signal
support priors are not i.i.d.

3. The approach utilizes the prior Gaussian statistics of the ad-
ditive noise and the sparsity rate of the signal. The approach
is able to estimate the noise variance and sparsity rate in a
robust manner from the data.

4. The approach enjoys low complexity thanks to its greedy ap-
proach and the order-recursive update of its metrics.

1In the paper we use the term support distribution to refer to the distribu-
tion of the active elements of the unknown signal x.
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2. BAYESIAN SETUP FOR SUPPORT AGNOSTIC BLOCK
SPARSE SIGNAL RECONSTRUCTION

In this paper we will consider the estimation of a block-structured
sparse vector, x ∈ CN×1, from an observations vector y ∈ CM×1,
obeying the linear regression model,

y = Φx + n. (1)

Here Φ ∈ CM×N is a known regression matrix and n is the additive
white Gaussian noise vector CN (0, σ2

nIM ). We shall assume that x
has a block-sparse structure and is modeled as x = xA ◦ xB where
◦ indicates element-by-element multiplication. The vector xA mod-
els the support distribution and consists of elements that are drawn
from some unknown distribution2 and xB is a block-structered bi-
nary vector with K blocks of size C each as shown below:

xB = [0T xT
B1 0T xT

B2 0T · · ·xT
BK 0T]T. (2)

where Bi, i = 1, . . .K refer to the size C supports of each block.
Equivalently, we can write xB as3

xB = xb ⊗ 1C (3)

where 1C is a C × 1 vector of 1’s and xb is a K × 1 binary vector.
Block sparsity requires that only a few among the K blocks in xB
are non-zero. The blocks of xB (or equivalently, the elements of xb)
are activated according to a Bernoulli distribution with success prob-
ability λ. Thus, for example, probability of k blocks being active out
of the total K blocks will be λk(1 − λ)K−k. We observe that the
sparsity of vector x is controlled by λ and, therefore, we call it the
sparsity parameter/rate.

We purse an MMSE estimate of x given observation y and the
block partition (2) as follows

x̂mmse , E[x|y] =
∑
S

p(S|y)E[x|y,S], (4)

where the sum is executed over all possible 2K support sets formed
by K blocks. Given the support S composed of |S|/C blocks, (1)
becomes, y = ΦSxS + n, where ΦS is a matrix formed by select-
ing columns of Φ indexed by support S. Similarly, xS is formed
by selecting entries of x indexed by S. Since the distribution of x
is unknown or possibly non-Gaussian, computation of E[x|y,S] in
(4) is difficult or even impossible. Thus the best we could do is to
replace it with the best linear unbiased estimator (BLUE)4

E[x|y,S]← (ΦH
SΦS)−1ΦH

Sy. (5)

Now, the posterior in (4) can be written using Bayes rule as

p(S|y) = p(y|S)p(S)/p(y) (6)

The factor p(y) is a normalizing factor common to all posteriors and

2The distribution may be unknown or known with unknown parameters
or even Gaussian. Our developments are agnostic with regard to the statistics
of xA.

3Our algorithm applies to the general case when the C sized blocks could
be placed arbitrarily within xB . However, due to space limitation we focus
on the special case (3).

4This is essentially minimum-variance unbiased estimator (MVUE)
which renders the estimate (5) itself an MVU estimate. The linear MMSE
would have been a more faithful approach of the MMSE but that would de-
pend on the second-order statistics of the support, defying our support agnos-
tic approach.

hence can be ignored. Since the blocks in x are activated according
to a Bernoulli distribution with success probability λ, we have

p(S) = λ|S|/C(1− λ)K−|S|/C . (7)

It remains to evaluate the likelihood p(y|S). If xS is Gaussian,
p(y|S) would also be Gaussian and that is easy to evaluate. On
the other hand, when the distribution of x is unknown or even when
it is known but non-Gaussian, determining p(y|S) is in general very
difficult. To go around this, we note that y is formed by a vec-
tor in the subspace spanned by the columns of ΦS plus a Gaussian
noise vector, n. This motivates us to eliminate the non-Gaussian
component by projecting y onto the orthogonal complement space
of ΦS . This is done by multiplying y by the projection matrix
P⊥S = I − PS = I − ΦS

(
ΦH
SΦS

)−1
ΦH
S . This leaves us with

P⊥S y = P⊥Sn, which is Gaussian with a zero mean and covariance

K = E[(P⊥Sn)(P⊥Sn)H]

= P⊥S σ
2
nP⊥S

H
= σ2

nP⊥S .

Thus we can approximate the likelihood p(y|S) by,

p(y|S) ' 1√
(2πσ2

n)M
exp

(
−1

2

(
P⊥S y

)H
K−1

(
P⊥S y

))
. (8)

Simplifying and dropping the pre-exponential factor yields,

p(y|S) ' exp

(
− 1

2σ2
n

∥∥∥P⊥S y
∥∥∥2) . (9)

While we now have all the ingredients to evaluate the sum in (4) this
remains a challenging task when K is large as we have to evaluate
the sum over 2K terms. To go around this, we approximate the sum
by evaluating over a few support sets corresponding to significant
posteriors, yielding,

x̂ammse =
∑
S∈Sd

p(S|y)E[x|y,S]. (10)

where Sd is the set of supports corresponding to significant posteri-
ors. In the next section, we propose a greedy algorithm to find Sd.
For convenience, we represent the posteriors in the log domain and
define a dominant support selection metric ν(S), to be used by the
greedy algorithm, as

ν(S) , ln p(y|S)p(S)

= ln exp(
−1

2σ2
n

∥∥∥P⊥S y
∥∥∥2) + ln(λ|S|/C(1− λ)K−|S|/C)

=
1

2σ2
n

∥∥∥ΦS(ΦH
SΦS)−1ΦH

Sy
∥∥∥2 − 1

2σ2
n
‖y‖2

+
|S|
C

lnλ+ (K − |S|
C

) ln(1− λ) (11)

3. SUPPORT AGNOSTIC BAYESIAN MATCHING
PURSUIT FOR BLOCK-STRUCTURED SPARSE SIGNALS

We now present a greedy algorithm to determine the set of dominant
supports Sd required to evaluate x̂ammse in (10). We search for
the optimal support in a greedy manner. We first start by finding the
best block which involves evaluating ν(S) for S = B1,B2, . . . ,BK ,
i.e., a total of

(
K
1

)
searches. Let S1 = B?1 be the optimal support.

Now, we look for the optimal support composed of two blocks. Ide-
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1: procedure BLOCK-SABMP(Φ,y,xB , rstop)
2: estimate λ, and σ2

n as follows
3: i? ← arg max

i∈[1,··· ,N ]

∣∣φH
i y
∣∣

4: ρ?i ←

{
0, if

∣∣φH
i y
∣∣ < ∣∣φH

i?y
∣∣ /2

1, otherwise

5: λ←
(⌈∑N

i=1 ρ
?
i /C

⌉
/K
)

6: repeat
7: P ← Kλ+ ε
8: λold ← λ
9: {Sd, p(Sd|y),E[x|y,Sd]} ← G(Φ,y, λ, σ2

n, P,xB)
10: Ŝmap ← arg maxSp(S|y)
11: x̂map ← E[x|y, Ŝmap]
12: x̂ammse ←

∑
S∈Sd p(S|y)E[x|y,S]

13: λ←
⌈
‖x̂map‖0 /C

⌉
/K

14: σ2
n ← var(y −Φx̂ammse)

15: until |λ− λold|/λold < rstop
16: return x̂ammse
17: end procedure

Table 1: Block-SABMP

ally, this involves a search over a space of size
(
K
2

)
. To reduce the

search space, however, we pursue a greedy approach and look for
the block B?2 6= B?1 such that S2 = {B?1 ,B?2} maximizes ν(S2).
This involves

(
K−1

1

)
searches (as opposed to the optimal search

over a space of size
(
K
2

)
). We continue in this manner by forming

S3 = {B?1 ,B?2 ,B?3} and searching for B?3 in the remaining K − 2
blocks and so on until we reach SP = {B?1 , . . . ,B?P }. The value
of P is selected to be slightly larger than the expected number of
active blocks in the constructed signal such that Pr( |S|

C
> P ) is

sufficiently small5.
One point to note here is that in our greedy move from Sj to

Sj+1, we need to evaluate ν(Sj ∪Bj+1) aroundK times, which can
be done in an order-recursive manner starting from that of ν(Sj).
Specifically, we note that every expansion, Sj ∪ Bj+1, from Sj re-
quires a calculation of ν(Sj∪Bj+1) using (11) which can be done in
an order-recursive manner by considering the elements of Bj+1 one
at a time. We summarize these calculations in Section 4. The nature
of our greedy algorithm allows us to output not just the set of dom-
inant supports but also the ingredients needed to compute xammse
in (10) without any additional cost. Specifically, since ν(S) is sim-
ply ln p(S|y), we do not need to compute the posteriors separately.
Similarly, the form of E[x|y,S] in (5) lends itself as an intermediate
computation performed to calculate ν(S).

One of the advantages of the proposed greedy algorithm is that it
is agnostic to the support distribution; the only parameters required
are the noise variance, σ2

n, and the sparsity rate, λ. However, the
proposed method can bootstrap itself and does not require the user to
provide any initial estimate of λ and σ2

n. Instead the method starts by
finding initial estimates of these parameters and repeat the greedy al-
gorithm until the parameters converge. The estimate of xmmse avail-
able at this stage is then returned. The formal algorithmic descrip-
tion of our algorithm is presented in Table 1 where the procedure

5Support of the constructed signal, follows the binomial distribu-
tion B(K,λ), which can be approximated by the Gaussian distribution
N (Kλ,Kλ(1 − λ)) if Kλ > 5. For this case, Pr(

|S|
C

> P ) =
1
2

erfc P−Kλ√
2Kλ(1−λ)

.

‘G’ on line 9 refers to the greedy steps mentioned above. Moreover,
the MATLAB code for our algorithm, called block-support agnos-
tic Bayesian matching pursuit (block-SABMP), is provided on the
author’s website.6

4. EFFICIENT COMPUTATION OF THE DOMINANT
SUPPORT SELECTION METRIC

Assume that the likelihood has been calculated for S? and we know
ν(S?). Let us see how we can update the value of ν(S?) to ν(S? ∪
Bi) (i.e., how to calculate the likelihood to include an additional
block Bi = {bi1 , bi2 , . . . , biC}). This can be done by adding the C
elements one by one, i.e., by performing the sequence of recursive
updates ν(S?) → ν(S? ∪ {bi1}) → ν(S? ∪ {bi1 , bi2}) · · · →
ν(S? ∪ {bi1 , . . . , biC}).

By inspection of ν(S) in (11), we see that the main challenge
is in calculating the term

∥∥(ΦS(ΦH
SΦS)−1ΦH

Sy
)∥∥2 which can be

written in terms of the expectation as ‖ΦSE[x|y,S]‖2. So, we
mainly need to update E[x|y,S]. To this end, consider the general
support S = {s1, s2, s3, . . . , sk} with s1 < s2 < · · · < sk and let
S and S denote the subset S = {s1, s2, s3, . . . , sk−1} and superset
S = {s1, s2, s3, . . . , sk+1}, respectively, where sk < sk+1. In the
following, we demonstrate how to update ey,k−1(S) , E[x|y,S]
to obtain7 ey,k(S) = E[x|y,S]. Note that since S = S ∪ {sk}, we
can write

ey,k(S) =

ΦH
S

φH
sk

 [ΦSφsk]
−1 ΦH

Sy

φH
sk

y

 . (12)

By using the block inversion formula to express the inverse of the
above and simplifying, we get

ey,k(S) =

 Γeφ,k(S) + ey,k−1(S)

−Γ

 (13)

where Γ = 1
fS

(qH
φ,k(S)ey,k−1(S) − ey,1(sk)). This recursion

is initialized by ey,1(i) = (φH
sφs)

−1φH
sy. The recursion also

depends on qφ,k(S) , ΦH
Sφsk , eφ,k(S) , (ΦH

SΦS)−1ΦH
Sφsk

and fS , 1 − qH
φ,k(S)eφ,k(S). The recursions for eφ,k(S), and

qφ,k(S) may be determined as follows8

eφ,k+1(S) =

 Λeφ,k(S) + eφ,k(S; sk+1)

−Λ

 (14)

where Λ = 1
fS

(qH
φ,k(S)eφ,k(S; sk+1)− eφ,2(sk; sk+1)),

qφ,k+1(S) =

[
ΦH
S

φH
sk

]
φsk+1

=

[
qφ,k(S; sk+1)
qφ,2(sk; sk+1)

]
(15)

The two recursions (14) and (15) start at k = 2 and are thus ini-
tialized by eφ,2(s1; s2) and qφ,2(s1; s2) for s1, s2 = 1, 2, . . . , N .

6The MATLAB code of the block-SABMP algorithm presented in this
paper is provided at http://faculty.kfupm.edu.sa/ee/naffouri/publications.html

7We explicitly indicate the size k of S in this notation as it elucidates the
recursive nature of the developed algorithms.

8Notation such as eφ,k(S; sk+1) is a short hand for eφ,k(S∪{sk+1}).
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This completes the recursion of ey,k(S) which we utilize for recur-
sive evaluation of ν(S).

5. SIMULATION RESULTS

To demonstrate the performance of the proposed block-SABMP al-
gorithm, we compare it with the known block partition version of
cluster-SBL algorithm [14] and Block-CoSaMP [6]. Since there
are various versions of cluster SBL algorithms, we selected the one
(BSBL-EM) which performed best among its other versions. This
algorithm takes into account the intra-block coherence and performs
EM updates of required parameters. The reason cluster-SBL was se-
lected is that it was shown to outperform a number of algorithms, in-
cluding Block-OMP [8], CluSS-MCMC [16], DGS [17], and Mixed
`2/`1 norm [3] algorithms. However, Block-CoSaMP was selected
due to its known robustness. Comparisons show that block-SABMP
performs where both algorithms fail.

Experiments were conducted for signals whose active elements
were drawn from Gaussian as well as non-Gaussian distributions.
Entries of M × N measurement matrix Φ were i.i.d., with zero
means and complex Gaussian distribution. Columns of Φ were nor-
malized to the unit norm. The size of Φ was different for both exper-
iments and is mentioned therein. The noise had a zero mean and was
white and Gaussian, CN (0, σ2

nIM ), with σ2
n determined accord-

ing to the desired signal-to-noise ratio (SNR). Finally, we used two
different metrics for performance measure; the normalized mean-
squared error (NMSE) between the original signal, x, and its MMSE
estimate, x̂ammse defined by 10 log10

(
‖x̂k − xk‖2 / ‖xk‖2

)
, and

the success rate. Success rate is defined as the ratio of the number
of successful trials to the number of total trials, where a trial was
considered successful when the condition NMSE ≤ −10 dB was
satisfied. The number of trials performed for computing NMSE was
200 while that for success rate was 1000.

5.1. Experiment 1: Performance under different undersam-
pling ratios

In this experiment we fixed N = 256 and varied M to study the
behavior of the two algorithms for different undersampling ratios.
The block sparse signal consisted of 16 blocks, out of which 6 were
active. For the signal size ofN = 256 this amounted to a sparsity of
0.375. SNR was kept at 20 dB. Fig. 1 shows the success rate plotted
versus varying number of measurements. It is obvious that Block-
SABMP required lesser number of measurements as compared to
cluster-SBL, for both Gaussian and non-Gaussian inputs, to achieve
a perfect success rate. Block-CoSaMP only started performing for
M > 130 therefore its results are not shown in this figure. The
figure also shows that block-SABMP is robust to the distribution of
the non-zero elements of vector x while the performance of BSBL-
EM degraded a little when the distribution was non-Gaussian. This
ascertains our claim that our algorithm is agnostic to signal statistics.

5.2. Experiment 2: Performance under varying sparsity rate

Recall that the value of sparsity rate used for Experiment 1 was quite
high (37.5% non-zero entries) which meant that the signal had more
active blocks and thus was less sparse. Though we demonstrated the
robust behavior of our algorithm for less sparse signals, we would
also like to compare our algorithm’s performance for low values
of sparsity rate. In this scenario, since the errors are very small,
comparing success rate will not give the complete picture. Thus
we plot NMSE versus sparsity in Fig. 2. Specifically, we consider
M = 128, N = 512 and SNR= 10 dB. Blocks of size C = 4 were

considered and the number of active blocks were varied from 1 to
10 in order to study the performance for signals having up to 8%
non-zero entries. It is obvious from the graphs that block-SABMP
outperforms both the cluster-SBL and block-CoSaMP algorithms. It
is also obvious from the figure that unlike other algorithms the per-
formance of block-SABMP does not depend on the distribution of
the non-zero elements of vector x. Note that in this experiment the
SNR was kept low as compared to the previous one to demonstrate
the effectiveness of our algorithm.
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Fig. 1: Experiment 1: Success rate vs measurements. Distribution
of non-zero elements: Gaussian (solid), non-Gaussian (dotted)
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Fig. 2: Experiment 2: NMSE vs sparsity rate. Distribution of non-
zero elements: Gaussian (solid), non-Gaussian (dotted)

6. CONCLUSION

In this paper, we introduced a robust Bayesian matching pursuit al-
gorithm based on a fast recursive method for block-sparse signal re-
covery. Compared with other Bayesian approaches, it does not re-
quire the active blocks in signals to be derived from some known dis-
tribution. This is useful when we cannot estimate the parameters of
the signal distributions. The algorithm does not require the initial es-
timates of signal sparsity and noise variance and is able to boot strap
itself. We demonstrated that the algorithm is robust and performs
well under extreme conditions (e.g., very high sparsity/measurement
ratio, low SNR) irrespective of the distribution of the active blocks.
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