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ABSTRACT

In this paper we show that convolutions of sufficiently sparse signals
always admit a non–zero lower bound in energy if oversampling of
its Fourier transform is employed. This bound is independent of the
signals and the ambient dimension and is determined only be the
sparsity of both input signals. This result has several implications
for blind system and signal identification and detection, noncoherent
communication of sporadic and short–message type user data and
strategies for its compressive reception. Furthermore, we give some
first insights into the combinatorial nature of this problem, its scaling
behavior and present numerical results as well.

Index Terms— Circular Convolution, Sparsity, Young Inequal-
ity, Discrete Uncertainty Principle

1. INTRODUCTION

Starting with the first fundamental results in compressed sensing [1]
it is known nowadays that the geometry of compressible signals can
be used for an impressive reduction of the sampling rate down to
the order of its information content. This includes sparse signals
and signals with certain power law decay in its magnitude–ordered
components.

A new objective is the characterization of operations between
compressible signals and the determination of the complexity of the
resulting output set [2, 3, 4, 5]. This situation has been considered
for bilinear mappings in the paper [2] and an important case here
is the convolution of two signals both being sparse in the canonical
basis. The rate of non–adaptive compression of the output set de-
pends strongly on its geometry and this in turn is determined by the
bilinear mapping itself. A peculiar property that implies a sampling
complexity being additive in the sparsity of both inputs is that the
ℓ2–norm of the output can be related to the product of the ℓ2–norms
of the inputs1. For convolutions this refers to a reversed version of
the Young inequality which is known only for positive signals [6].
The goal of this paper is to indicate such an input–output energy
equivalence for sufficiently sparse inputs. This is a surprising result,
since this equivalence does not exists for arbitrary input signals.

Independently of the question of compressive reception, this
input–output–property has also further important and practical appli-
cations. A typical situation in wireless communication, for example,
is that one contribution is some possibly random but known probe
signal [7] or even an unknown sparse signal containing a short mes-
sage and the second contribution might be a time–invariant channel
with a quite small number of taps. From the discrete uncertainty

1 In [2] we have called this ”restricted norm multiplicativity”(RNMP)

principle [8] one could argue heuristically that with decreasing
support of both signals its Fourier transforms will get more and
more overlapping supports. Hence, with improved input sparsity
of the signals its convolution will become increasingly observable
in additive noise only by energy. For example, in blind system
identification and signal detection both signals have to be identified
based on observations of its convolution [9]. This noncoherent com-
munication approach will become more important since in many
new wireless applications (like for example ”internet of things” and
”machine type communication”) only short messages like status
updates are transmitted through an unknown but sparse channel and
should be decoded without performing complex channel estimation,
feedback and channel–aware transmitter strategies [10].

The paper is organized as follows: In Section 2 we reformulate
sparse convolutions as certain linear mappings on tensor products.
We state our main results in Section 3 which includes a reversed
ℓ2–inequality, combinatorial statements and insights from discrete
uncertainty principles. Furthermore, we show that the optimal con-
stants are given as the minima of bi–quadratic optimization prob-
lems, which are usually NP–hard. In Section 4 we sketch the proof
of the inequality and discuss the scaling of the optimal constants in
terms of sparsity. Finally, we present in Section 5 a numerical algo-
rithm that approximates the constants up to a desired accuracy but
with exponential complexity.

2. SPARSE CIRCULAR CONVOLUTION

Let F be the Fourier matrix having elements [F]lk = 1√
n
e−2πı lk

n

for l, k ∈ N with N := {0, . . . , n − 1}. The circular convolution
x⊛ y ∈ R

n of two (real) vectors x,y ∈ R

n is given [11] by:

x⊛ y :=
√
nF∗diag(Fx)Fy =: Xy. (1)

As well–known, the circulant matrix X can be diagonalized by the
discrete Fourier transform F and is given in terms of the (right) n×n
shift matrices Si with elements (Si)kl = δk,l⊕i as:

X =

n−1
∑

i=0

xiS
i. (2)

⊕ denotes the addition modulo n and δi,j = 0 for i 6= j and 1 else.
On the other hand, since x ⊛ y is bilinear in both inputs, the

circular convolution can be described by standard lifting as a linear
mapping SN : Rn⊗n → R

n from tensor products x ⊗ y or, equiv-
alently, from rank–one matrices xy∗ to Rn. In the canonical basis
{ek ⊗ el}n−1

k,l=0, where [ek]l := δkl, the mapping is represented by
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the n× n2–matrix:

S
N = [1n S

1 · · · Sn−1] ∈ R

n×n2

. (3)

Consider now two subsets I, J ⊂ N and the corresponding canon-
ical subspaces X := span{ei}i∈I and Y := span{ej}j∈J of di-
mensions dim(X) = |I| =: s and dim(Y ) = |J | =: f . Let be
I = {i0, . . . , is−1}. Then the action of C restricted on X ⊗ Y is
then determined by the stacked n× sf–matrix:

S
I
J = [Si0

J S
i1
J · · · Sis−1

J ] ∈ R

n×sf (4)

where Si
J is the n× f–submatrix of Si with column indices in J .

3. MAIN RESULT

In this section, we will show for s ≤ f ≤ n, that all (s, f)−sparse
circular convolutions embedded in Rñ with ñ = 2n − 1 have an
universal ℓ2-norm lower bound. Notation: The sets

Σs =
⋃

I⊂N
|I|=s

span{ei}I , Σf =
⋃

J⊂N
|J|=f

span{ei}J

denote all s-sparse resp. f -sparse vectors in Rn. The support of x
is denoted by suppx. The ℓ2−norm is given by ‖x‖ :=

√
∑

i x
2
i .

We set 0 := (0, . . . , 0)T ∈ R

n−1 and Σ̃s := (Σs,0) ⊂ R

ñ.

Theorem 1. Let s,f and n be natural numbers with 1 ≤ s ≤ f ≤ n.
Then there exist a constant am> 0 with m = min{sf, n}, such that
for all x̃ ∈ Σ̃s and ỹ ∈ Σ̃f it holds:

am ‖x̃‖2 ‖ỹ‖2 ≤ ‖x̃⊛ ỹ‖2 ≤ s ‖x̃‖2 ‖ỹ‖2 . (5)

Moreover, am is a strictly decreasing sequence.

Related work: As already noted in the introduction, the lower
bound in the theorem refers to a variant of a reverse Young inequal-
ity [6]. be a new and fundamental result for sparse convolutions.
The condition of appending n − 1 zeros to x and y seems to be
necessary: for s = f = 2, ñ = 2n − 2 and every n ≥ 4 it fol-
lows that ‖x̃⊛ ỹ‖ = 0 for x̃, ỹ ∈ R

ñ when the non-zero com-
ponents are x̃0 = x̃n−1 = y0 =

√

1/2 and ỹn−1 = −ỹ0 and
therefore a = 0. Our result establishes a restricted norm multiplica-
tivity (RNMP) [12] for all (s, f)–sparse convolutions on the specific
subset Σ̃s × Σ̃f . This condition in turn can be used to establish a
restricted isometry property (RIP) on the output set Σ̃s ⊛ Σ̃f . How-
ever, the concrete improvement of the sampling rate for the output
signals, as suggested in [3], is still an open question.

3.1. Discrete Uncertainty Principle

Here, we use results on the discrete uncertainty principle of DONOHO-
STARK [13] and a refined version of TAO [8] and CHEBOTARËV [14]
to motivate our result for groups of prime order without an extra zero
padding. Donoho and Stark could show in [13] the following dis-
crete Uncertainty Principle for any x ∈ R

n

‖x‖0 ‖Fx‖0 ≥ n (6)

‖x‖0 + ‖Fx‖0 ≥ 2
√
n (7)

Since diag(Fx)Fy = Fx ⊙ Fy, where ⊙ denotes the pointwise
product, we can see by definition (1), that

‖x⊛ y‖ =
√
n ‖Fx⊙ Fy‖ . (8)

Hence, we get the following implication

(x 6= 0 6= y, ‖Fx‖0 + ‖Fy‖0 > n) ⇒ (Fx⊙ Fy 6= 0)

⇔ (0 6= x⊛ y)

⇔ (0 6= ‖x⊛ y‖)
(9)

By the DONOHO-STARK inequality (6) and with ‖x‖0 ≤ s and
‖y‖0 ≤ f in Theorem 1 we get

‖Fx‖0 + ‖Fy‖0 ≥ n

s
+

n

f
= n

s+ f

sf

!
> n. (10)

This is only possible if s+ f > sf , which holds if and only if s = 1
or f = 1. But this is trivial. So Donoho-Stark can not provide the
existence of a > 0 in Theorem 1 for all cases. In fact, if n is prime,
the TAO inequality [8]

‖x‖0 + ‖Fx‖0 ≥ n+ 1 ⇔ ‖Fx‖0 ≥ n+ 1− s (11)

yields with the assumption n ≥ s+ f − 1

‖Fx‖0+‖Fy‖0 ≥ 2n+2−s−f ≥ n+1 >n. (12)

Hence, whenever 1 ≤ s + f − 1 ≤ n and n is prime, we have for
all x ∈ Σs,y ∈ Σf that x ⊛ y 6= 0 ⇔ x 6= 0 6= y. Due to the
upper bound in (5), which was shown in [12], the map ‖x⊛ y‖ is
continuous and hence the infimum a is attained and larger than zero.
Nevertheless, we will see in the next section, that solving a is an
NP-hard problem.

3.2. Bi-quadratic Optimization and NP–hardness

The optimal lower bound aopt in (5) can be formalized as a non-
convex optimization problem. For any x,y ∈ R

n the objective
function can be calculated as:

b(x,y) : =

∥

∥

∥

∥

∥

n−1
∑

i=0

xiS
i
y

∥

∥

∥

∥

∥

2

=

n−1
∑

m=0

(

n−1
∑

i=0

n−1
∑

j=0

[Si]mixiyj

)2

=

n−1
∑

m=0





n−1
∑

i=0

n−1
∑

j=0

[Si]mjxiyj

n−1
∑

i′=0

n−1
∑

j′=0

[Si′ ]mj′xi′yj′





=
∑

i,i′

∑

j,j′

δi⊕j,i′⊕j′xiyjxi′yj′

where we define the tensor B = (δi⊕j,i′⊕j′) of fourth order by

δi⊕j,i′⊕j′ : =
∑

m

[Si]mj [S
i′ ]mj′ =

∑

m

δm,i⊕j · δm,i′⊕j′ (13)

Since B is not partially symmetric, we symmetrize by

biji′j′ : =
1

2
(δi⊕j,i′⊕j′ + δi′⊕j,i⊕j′) (14)

using the property δi,j = δj,i. Hence B satisfy
∑

i,i

∑

j,j′

δi⊕j,i′⊕j′xiyjxi′yj′ =
∑

i,i

∑

j,j′

biji′j′xiỹjxi′yj′

with the partially symmetries

biji′j′ = bi′jij′ = bij′i′j , 0 ≤ i, j, i′, j′ ≤ n− 1. (15)

For I ⊂ N we define the embedding of x̂ ∈ R

s in Rn by xα :=
[Pn

I x̂]j :=
∑s−1

α=0 δjα,j x̂α for j ∈ N . We denote for fixed I, J by
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aI,J the solution of the bi-quadratic optimization problem over the
bi-sphere given by

(P ) min
(x̂,ŷ)∈Ss−1×Sf−1

b(Pn
I x̂,P

n
J ŷ), (16)

then the optimal lower bound is given by aopt := minI,J aI,J . For
fixed B, I, J , this problem was well studied in [15, (1.1)] and is
by Theorem 2.2. NP-hard. Furthermore the authors in [15] could
show that (P ) can be written as a bilinear SDP relaxation problem,
which obtains the same optimal solution by Theorem 2.4. Hence,
this relaxation is also NP-hard. An alternative approach is to fix y

and calculate the n× n matrix By, by

bi,i′(y) : =
∑

j,j′

biji′j′yjyj′ =
∑

j,j′

δi⊕j,i′⊕j′yjyj′ (17)

=
∑

j

yjyj⊕(i⊖i′) = bi−i′(y), (18)

which defines a symmetric Toeplitz matrix [16],[11]. Moreover

min
‖x‖=1

b(x,y) = min
‖x‖=1

〈x,Byx〉 = λ(By) (19)

is the smallest eigenvalue of By [15, (1.3)], which is non-negative
and efficiently solvable, see Section 5.

4. SKETCH OF PROOF

Embedding Rn in Rñ with ñ = 2n − 1 by adding n − 1 zeros to
each vector, we can replace the addition modulus ñ with the usual
addition, since for all index sums in (18) it holds j + k ≤ 2n − 2
for j, k ∈ N . Moreover, using the support property x̃ = (x,0)
equation (19) defines the smallest eigenvalue of the n× n principal
submatrix in B̃ỹ given by [Bỹ]ii′ = bi−i′ = bk for i, i′ ∈ N . The
first row is then given for k ∈ N as

bk(ỹ) =

ñ−1
∑

j=0

ỹj ỹj⊕k =

n−1
∑

j=0

yj ỹj+k =

n−1−k
∑

j=0

yjyj+k = bk(y) (20)

and Bỹ = By. The aperiodic autocorrelation vector b(y) in (20),
can be written as b = Yy, where Y is an n × n skew-symmetric
Toeplitz matrix with elements [Y]jk = yj+k, which has due to the
removed periodicity a triangular structure. The shift k moves the
support out of J , Hence the number of non-zero coefficients per rows
decreases. If we restrict the support x,y to I resp J , then we cut
out a symmetric s × s Toeplitz matrix BI

y with coefficients k ∈
I ⊖ i0 = I − i0 = {k0, . . . , ks−1} Assume we can represent (20)
for each I, J and ŷ by a s samples k̄i of the autocorrelation of a
vector ȳ = ȳ(ŷ) ∈ R

m, i.e. for all i ∈ {0, . . . , s− 1} we set

bIi (y) := bki
(y) =

m
∑

j=0

ȳj ȳj+k̄i
=: bk̄i

(ȳ), (21)

which generates the m×m Toeplitz matrix

B
m
ȳ =







b0(ȳ) . . . bm−1(ȳ)
...

. . .
...

bm−1(ȳ) . . . b0(ȳ)






(22)

with symbol

b(ȳ, ω) = 1 +

m−1
∑

l=0

bl(ȳ) cos(lω) , ω ∈ [0, 2π). (23)

Then the s coefficients in (21), define the principal submatrix BI
y

of Bm
ȳ and by CAUCHYS Interleacing Theorem, the eigenvalues are

bounded from below by the smallest eigenvalue of Bm
ȳ , i.e.

min
ŷ∈Sf−1

λ(BI
Pn

J
ŷ) ≥ min

x,ȳ∈Sm−1

〈

x,Bm
ȳ x
〉

= min
ȳ

λ(Bm
ȳ ), (24)

where the right hand side is independent of I and J . Hence, b(ȳ, ω)
with bl given in (21) is by the SZEGÖ Theorem a nonnegative cosine
polynomial of order m− 1 [17, Thm.4], i.e. we have to consider the
minimum over all Szegö type polynomial of order m − 1. For each
normalized ȳ ∈ R

m we get 0 ≤ minω b(ȳ, ω) and by Böttcher in
[18, (10.2)] we have λ(Bm

ȳ ) > 0 . Then Bm
ȳ is invertible and the

determinant | det(Bm
ȳ )| > 0. Using

1

λ(Bm
ȳ )

=
∥

∥B
m
ȳ

∥

∥

2
(25)

[18, p.59], we can estimate the smallest eigenvalue (singular value)
by [18, Thm. 4.2] to the determinant as

λ(Bm
ȳ ) ≥ | det(Bm

ȳ )| 1√
m(
∑

l |bl(ȳ)|2)(m−1)/2
. (26)

where the ℓ2−norm of the sequence bk can be upper bounded by

∑

l

|bl(ȳ)|2≤1+2

m−1
∑

l=1

|
m−1
∑

j=0

ȳj ȳj+l|2 ≤ 1+2m−2≤3m, (27)

which is independent of ȳ ∈ Sm−1! Since the determinant is a con-
tinuous function in y over a compact set, the minimum is attained
and is denoted by cm := minȳ | det(Bm

ȳ )|. Note, that cm is a de-
creasing sequence, since we extend the minimum to a larger set by
increasing m. Hence we get

min
ȳ

(

| det(Bm
ȳ )| 1√

m(3m)(m−1)/2

)

=

√
3

(3m)m/2
cm (28)

This is a valid lower bound by (26) for the smallest eigenvalue of all
possible Bm

ȳ . Hence we have shown

aopt ≥ min
ỹ∈Σ̃f

‖ỹ‖=1

min
x̃∈Σ̃s
‖x̃‖=1

b(x̃, ỹ) ≥
√
3(3m)−

m
2 cm =: a(m). (29)

The upper-bound in (5) was shown by the authors in [2, (32)].

4.1. Combinatoric via Construction of an Algorithm

Let us set S := {0, . . . , s−1} and F := {0, . . . , f−1} and assume
that sf ≤ n. We will now show that then the dimension m of the
Toeplitz matrices can chosen to be at most m = sf . To this end we
define the vector ȳ ∈ R

m by ȳj =
∑

α∈F δj̄α,j ŷα and we denote its
support by the set J̄ = { j̄α | α ∈ F}. According to (21) we have
to show that there exist f resp. s indices {j̄α}α∈F and {k̄i}i∈S such
that for all i ∈ S it holds:

∑

α,β





n−1−k̄i
∑

j=0

δj,j̄αδj+k̄i,j̄β
−

n−1−ki
∑

j=0

δj,jαδj+ki,jβ



 ŷαŷβ

=: 〈ŷ,C(i)
ŷ〉 = 0 for all ŷ ∈ R

f

(30)

Thus, all s matrices C(i) ∈ R

f×f must identically zero. In other
words, the dimension m must be large enough, such that the f2 · s
equations:

δj̄α+k̄i,j̄β
= δjα+ki,jβ for all i ∈ S (31)
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can be fulfilled for some {j̄α}α∈F , {k̄i}i∈S ⊂ {0, . . . ,m− 1}.
In the Algorithm 1 below we show an inductive strategy to construct
such index sets. The algorithm starts with dimension m = f and

Algorithm 1 ”Inserting Zeros”

Set j̄α = α for all α ∈ F ⇒ m = f
Set k̄i = i for all i ∈ S
for i = 1 to s− 1 do

for α = 0 to f − 1 do
Ω ⇐ {jα+ki} ∩ {jβα+α, . . . , jf−1}, note that |Ω| ≤ 1
if |Ω| = 1 then

{jβα+1
} := Ω

k̄i′ ⇐ k̄i′+βα+1−1 for i ≤ i′ < s
else

j̄α′ ⇐ j̄α′ + 1 for α < α′ < f
end if
[verification, see (*) ]

end for
end for

successively increases the dimension m ⇒ m + 1. It contains two
nested loops i = 1 . . . s− 1 and α = 0 . . . f − 1 such that the total
number of added dimensions is (s − 1)f . Hence, the algorithms
finishes with at most m = f + (s − 1)f = sf . Furthermore, it
holds k̄s−1 ≤ s− 1 + (s− 1)(f − 2) ≤ sf − 1.
Let us emphasize some special sparse models:
If I, J are arithmetic progressions with same distance, then the algo-
rithm only enters the case |Ω| = 1 and generates k̄i = i and hence
we have m = f , which is the smallest possible embedding. More-
over, the inequality (24) becomes an equality such that the smallest
eigenvalue of all symmetric positive Toeplitz matrices corresponds
to the optimal lower bound of the convolution.
If I, J are maximal separated, i.e. for each k ∈ K we have
J + k ∩ J = ∅, then all Toeplitz matrices equals the Identity. Hence
a = λ = 1. Moreover, we have even equality in (5), see [12].

(*) Finally, we verify now that after step (i, α) the corresponding
requirement (31) already achieved in steps i′ < i are still satisfied
for all α′ and β′. However, in this step only j̄α′ for α < α′ ≤ f − 1
are redefined. Not changing the value of δjα′+ki′ ,jβ′

means that the
following cases for each fixed i′ and α′:

|Ω| = 1 ⇔ j̄α′ + k̄i′ = j̄β′ (32)

|Ω| = 0 ⇔ ∀β′ : j̄α′ + k̄i′ 6= j̄β′ (33)

should be remain unchanged. If the algorithm reassigns j̄α′ ⇒ j̄α′+
1 we have to satisfy:

|Ω| = 1 ⇔ j̄α′ + 1 + k̄i′ = j̄β′ + 1 (34)

since β′ > α. This is sufficient due to β′ ≤ α < α′, J is ordered
and k̄i′ ≥ 0. On the other hand:

|Ω| = 0 ⇔ ∀β′ : j̄α′ + 1 + k̄i′ 6=
{

j̄β′ + 1 β′ > α

j̄β′ β′ ≤ α
(35)

If β′ > α then from j̄α′ + k̄i′ 6= j̄β′ it follows also j̄α′ +1+ k̄i′ 6=
j̄β′+1. If β′ ≤ α then j̄α′+1+k̄i′ > j̄β′ since k̄i′ ≥ 0. Hence, also
here the step (i, α) possibly changing j̄α′ ⇒ j̄α′ + 1 is consistent
with previous steps.

5. ALGORITHMIC IMPLEMENTATION

The Problem in (19) can be approximated by discretization of y in
D = {0,

√

1/d, . . . ,
√

d/d} with d ∈ N. Hence Dm is a m-
dimensional uniform grid of the cube. For each fixed yd ∈ Dm

with ‖yd‖ = 1 we get Byd
and obtain the approximate solution

ad
m = min

yd∈Dm,‖yd‖=1
λ1(Byd

), (36)

which is an (1− 1/d)-approximation solution to a, [15],i.e.

am ≥ alow,d
m := ad

m − m

d
. (37)

The price, is the size of the cube grid: the number of possible grid
points yd are of the order |D|s = (d + 1)m < mm and hence
sub-exponential. We could establish in Fig. 1 with MATLAB global
lower bounds, drawn as doted green lines, for am. For m > 6 the
computational time was to large to establish a global lower bound.

1 2 3 4 5 6

10
−3

10
−2

10
−1

10
0

s=f

a

 

 
a

l,d

a
d

m

am

Fig. 1: Approximation results of the lower bound am.

6. CONCLUSIONS

We could show a non-zero ℓ2−norm lower bound for highly sparse
circular convolutions and establish a sub-exponential scaling de-
pending only on the input sparsity. This is a new and surprising
results, which offers new insight in digital signal processing.
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