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ABSTRACT

In a compressed sensing setup with jointly sparse, correlated data,

we develop a distributed greedy algorithm called distributed predic-

tive subspace pursuit. Based on estimates from neighboring sensor

nodes, this algorithm operates iteratively in two steps: first forming

a prediction of the signal and then solving the compressed sensing

problem with an iterative linear minimum mean squared estimator.

Through simulations we show that the algorithm provides better per-

formance than current state-of-the-art algorithms.

Index Terms— compressed sensing, greedy algorithms, predic-

tion methods, distributed compressed sensing.

1. INTRODUCTION

Compressed sensing (CS) [1, 2] is a sub-sampling technique where

the samples are formed through random linear combinations of an

underlying measured signal which is inherently sparse. For a stan-

dard single sensor setup problem it has been shown that few random

samples are sufficient for reconstruction of the full signal. In the

literature there are three popular reconstruction approaches; greedy

pursuit algorithms, convex relaxation and Bayesian methods. The

greedy pursuit algorithms provide good performance at low compu-

tational cost [3, 4, 5, 6, 7].

In CS setups where several sensors are present, efficient recon-

struction is possible by communicating and exploiting correlation

among jointly sparse data from the different sensors. In the litera-

ture, several signal models have been presented for describing corre-

lation structures, for example the common support-set model [8, 9],

mixed support-set model [10], mixed signal-model [11]. There exist

several centralized algorithms to exploit the correlation [12, 13]. We

are particularly interested in algorithms that can solve the CS prob-

lem with correlated data from multiple measurements in a distributed

manner. In a distributed setup, each sensor node exchanges data with

its neighbors and individually (or locally) endeavors for a reliable CS

reconstruction. There are various attempts to solve the distributed

CS problem using convex relaxation based methods [14, 15, 16, 17].

To the best of the authors’ knowledge there exists only one attempt

to solve the distributed CS problem based on greedy pursuit meth-

ods [18]. While the distributed CS mainly considers spatial- and/or

frequency domain correlations, there are some single sensor based

algorithms that exploit correlation over time [19, 20, 21, 22].

In this paper, we consider the distributed CS problem where mul-

tiple sensor nodes observe sparse signals according to the common

support-set model. In addition, we assume that the data from dif-

ferent sensors are correlated. We describe the signal model in detail

in section 2.1. This model is applicable in scenarios where sensors
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track some analog signal, e.g. estimating a shared power spectrum

based on samples from the air. For a distributed algorithm, it is im-

portant to know about the network topology among the sensor nodes;

this is described in section 2.2. Based on the signal model and for

a given network, we then develop a distributed algorithm that can

solve the distributed CS problem using tools from [18] and apply-

ing the predictive subspace pursuit (PrSP) algorithm of [23]. Here

we mention that the PrSP algorithm was developed by extending the

greedy subspace pursuit (SP) algorithm [4]. We end the paper with

some simulation results.

Notation: A∗ and A† denote the Hermitian transpose and

Moore-Penrose pseudoinverse of matrix A, respectively. A ⊕ B

denotes the direct sum of matrices. A[I,J ] denotes a sub-matrix of

A with elements from row and column indices listed in ordered sets

I and J , respectively. Similarly, the column vector x[I] contains

the elements of x with indices from support set I.

2. DISTRIBUTED COMPRESSED SENSING

We begin by describing the distributed CS problem in a general mul-

tiple sensor network setup [11]. We follow this by a description of

the signal model. Without details, we mention network topology.

In the distributed CS problem, the sparse signal xl ∈ C
N at the

l’th sensor is measured according to the linear model,

yl = Hlxl +wl ∈ C
M
, ∀l ∈ {1, 2, ..., L}, (1)

where Hl ∈ C
M×N is a known measurement matrix and that

wl is some measurement noise. In this setup M < N and

hence the system is under-determined. The signal vector xl =
[xl(1), . . . , xl(N)] has Kl(< M < N) non-zero or ‘active’ com-

ponents with a set of indices Il = {i : xl(i) 6= 0}. Il is referred to

as the ‘support set’ of xl. The measurement noise wl is assumed to

be zero-mean and independent across all l.

The distributed CS reconstruction problem consists of estimating

xl for each l in a distributed manner. This is done by exploiting some

common signal structure and exchanging the common information

across the sensor network. The signal structure applied in this paper

is described by the signal model in the next section.

2.1. Signal model

In this work, we assume that the set of sparse signals share the same

support set and statistical properties across the network. More for-

mally, this is modeled in the following way:

• All nodes share the same support I, where |I| ≤ K. That is,

∀l, Il = I and Kl ≤ K.

• The signal is assumed to be zero-mean, E[xl] = 0.
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• The active components are uncorrelated at node l,

E[x[I],lx
∗
[I],l] = σ2

xIN .

• Between nodes l and k, the active components are correlated,

E[x[I],lx
∗
[I],k] = ρIN .

An example of a scenario that fits this distributed CS problem is a

spectrum estimation problem in a cognitive radio network [24, 25].

In such a setup, each node may find common parts of the frequency

band that are occupied by some primary transmitter. The amplitudes

of occupied frequency bands may be subject to random variations

of the local environment (i.e., scattering, fading) but are likely to be

correlated. This correlation is in our model captured by the param-

eter ρ. Furthermore, we assume that E[wlw
∗
l ] = σ2

wIM and that

Hl has incoherent columns such that |h∗
l,ihl,j | ≪ |h

∗
l,ihl,i| [26].

Without loss of generality it is assumed that the columns have unit

norm.

In summary, it is assumed that Hl, K, σ2
x, ρ and σ2

w are given.

Next, we consider the properties of the sensor network.

2.2. Network topology

In a distributed setup, we assume that the CS nodes are connected in

a joint network where there is at least one connection between any

two nodes; otherwise the setup is equivalent to two, or more, disjoint

networks. The information exchange between nodes is modeled by

a directed graph, where each node l has a set of incoming neigh-

bors, N in
l , from which it receives information, and a set of outgoing

neighbors,N out
l , to which it transmits information. A thorough study

of the network topology and the resulting estimation performance in

various settings is beyond the scope of this paper. Instead, for a

practical setup, we assume a network consisting of ten nodes and

each node has two outgoing neighbors and two incoming neighbors

arranged in such a way that the network is connected.

3. DISTRIBUTED PREDICTIVE SUBSPACE PURSUIT

In this work we develop a distributed subspace pursuit algorithm

which by exchanging data among its neighbours iteratively improves

an estimate of the sparse signal. In the first iteration of node l, lo-

cal estimates x̂l are formed based on yl and Hl. Then, these local

estimates are sent to the outgoing set of neighbors N out
l . The re-

ceived information from the incoming neighborsN in
l is used to form

a prediction of the local signal xl. In the second iteration, this pre-

diction is incorporated with the local measurement yl by a predictive

subspace pursuit to produce a new, improved, local estimate which

is again shared over the network. Note that due to the sparse na-

ture of the signal, the distributed algorithm at a sensor l only needs

to send at most K integers and real valued numbers (Îl and x̂[I],l)

at each transmission. Since the core of the distributed algorithm is

the predictive subspace pursuit algorithm, we refer to the distributed

algorithm by distributed predictive subspace pursuit (DPrSP). A de-

tailed description of DPrSP is given in Section 3.3. But before we

describe DPrSP we first describe the underlying PrSP sub-algorithm

and formulate the predictor.

3.1. Predictive Subspace Pursuit

In this section, we drop the sub-index l for less notational clutter.

The predictive subspace pursuit (PrSP) requires a prediction of the

signal, denoted x̂−, with error covariance matrix P−. This informa-

tion is used along with a measurement y to detect the support set in

a weighted matched filter framework, after which the active coeffi-

cients are reconstructed by a linear minimum mean square estimator

(LMMSE). The PrSP algorithm effectively operates by solving the

following optimization problem iteratively over support sets I ac-

cording to the subspace pursuit method [4]:

x̂[I],n = argmin
x[I]∈C|I|

∥∥∥∥

[
yn

x̂−
[I],n

]
−

[
H[·,I]

I|I|

]
x[I]

∥∥∥∥
2

R−1⊕P
−1
[I,I],n

. (2)

Due to spatial limitations we omit the details of PrSP and instead

refer the reader to the previous work [23].

A function call to incorporate PrSP is defined as follows:

(x̂, Î, η)← PrSP(y,H,R, x̂
−
,P

−),

where R and η = ‖y −H[·,Î]x̂[Î]‖
2 denotes the noise covariance

matrix and measurement residual norm, respectively.

When no side information is given from other nodes, the predic-

tion is the prior x̂− = 0 with P− = σ2
xIN . With this prediction, the

error statistics of the LMMSE employed by the nodes can be approx-

imated. This allows each node l to use the received estimates from

N in
l as a prediction of its local signal xl, which is subsequently re-

estimated. Next, we formulate a linear predictor based on received

estimates.

3.2. Linear predictor

For node l, let {zn}
T
n=1 denote the set of received state estimates

from incoming nodesN in
l , where T = |N in

l |. We now formulate the

linear predictor that minimizes the mean square error of the predic-

tion x̂−
l given {zn}

T
n=1.

Each zn, with detected support set I, can be approximated by

the expressions for the linear minimum mean square error estimator,

zn = Knyn, where the rows of Kn ∈ C
N×M with indices Ic

consisting of zeros. More specifically,

z[I],n = K[I,·]yn

= σ
−2
w

(
σ
−2
x I|I| + σ

−2
w H

∗
[·,I]H[·,I]

)−1
H

∗
[·,I]yn

(3)

and z[Ic],n = K[Ic,·]yn = 0yn. Furthermore, let Sn denote the

covariance matrix of zn, then

Sn = E[znz
∗
n]

= E [Kn(Hnxn +wn)(Hnxn +wn)
∗
K

∗
n]

= σ
2
xKnHnH

∗
nK

∗
n + σ

2
wKnK

∗
n.

(4)

Note that Sn has at most rank K. Expressions (3) and (4) provide

a model of the received estimates at node l. The cross-correlation

between {zn}
T
n=1 and the local signal xl, enables the formulation

of the linear predictor.

By stacking the received estimates as u , vec ([z1, . . . , zT ]),
the linear prediction equals [27]

x̂
− = RxuR

†
uu (5)

with approximate error covariance matrix

P
− = σ

2
xIN −RxuR

†
uR

∗
xu. (6)

Here

Rxu =
[
E[xlz

∗
1] · · · E[xlz

∗
T ]
]

=
[
E[xly

∗
1K

∗
1] · · · E[xly

∗
TK

∗
T ]
]

=
[
ρH∗

1K
∗
1 · · · ρH∗

TK
∗
T

]
∈ C

N×NT
,

(7)
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and

Ru =




E[z1z

∗
1] · · · E[z1z

∗
T ]

...
. . .

...

E[zT z
∗
1] · · · E[zT z

∗
T ]



 ∈ C
NT×NT

, (8)

where

E[zmz
∗
n] =

{
Sn for m = n

ρKmHmH∗
nK

∗
n for m 6= n

. (9)

Two problems impede the practicality of this estimator however.

First, for large N and T the computational complexity may be pro-

hibitive. Second, when the sensing matrices Hn differ across the

network, it is impractical for each node to store the matrices of its in-

coming neighboursN in. To address these problems, we exploit inco-

herence of the sensing matrix by approximating H∗
[·,I]H[·,I] ≈ I|I|.

Then the matrices Ru and Rxu become sparse which reduces the

computational complexity of the estimator drastically. As a result,

the estimator model is approximated by

K[I,·] = σ
−2
w

(
σ
−2
x I|I| + σ

−2
w H

∗
[·,I]H[·,I]

)−1
H

∗
[·,I]

≃ σ
−2
w

(
σ
−2
x I|I| + σ

−2
w I|I|

)−1
H

∗
[·,I]

=
σ2
x

σ2
x + σ2

n

H
∗
[·,I]

= κH
∗
[·,I],

(10)

where κ ,
σ2
x

σ2
x+σ2

w
. Further, let G(In) be a diagonal matrix with

elements,

gjj =

{
1 for j ∈ In
0 otherwise

. (11)

Then

KnHn ≃ κG(In) ∈ C
N×N

,

and

Sn ≃ σ
2
xκ

2
G(In)G

∗(In) + σ
2
wκ

2
G(In)

= (σ2
x + σ

2
w)κ

2
G(In).

These expressions enable the following approximations,

Rxu ≃ ρκ
[
G∗(I1) · · · G∗(IT )

]
(12)

and

Ru ≃




(σ2

x + σ2
w)κ

2G(I1) · · · ρκ2G(I1)G
∗(IT )

...
. . .

...

ρκ2G(IT )G
∗(I1) · · · (σ2

x + σ2
w)κ

2G(IT )



 ,

(13)

which are sparse matrices that dispel the need for storing sensing ma-

trices Hn. We summarize the approximate optimal linear predictor

in function linpred(·).

Function 1 (Linear predictor) Given a set of received estimates

{zn}
T
n=1 and the signal parameters σx, ρ and σw at node l, the

following function

(x̂−
l ,P

−
l , )← linpred(σx, ρ, σw, {zn}

T
n=1),

computes its output according to (5) and (6), using approximations

(12) and (13).

y,H, K, σx, ρ, σw y,H,R

PrSP

DPrSP Network

N
out
l

N
in
llinpred

x̂−,P−

Fig. 1. flowchart of DPrSP

3.3. Decentralized estimation

Using PrSP in conjunction with the linear predictor formulated in

previous section, we are now ready to develop the DPrSP algorithm

which is executed in each node of a sensor network after a measure-

ment is obtained. Algorithm 1 provides a summary; also see Figure 1

for a graphical view.

Algorithm 1 Distributed Predictive Subspace Pursuit

Executed in the l’th node withN in
l as incoming neighbours andN out

l

as outgoing neighbours

Input: yl, Hl, K, σx, ρ, σw

Initialization:

1: x̂−
l ← 0, P−

l ← σ2
xIN , Rl ← σ2

wIM

2: ηl ←∞, η′
l ← ηl, T = |N in|

Iteration:

1: repeat

2: (x̂′
l, Î

′
l , η

′
l)← (x̂l, Îl, ηl)

3: (x̂l, Îl, ηl)← PrSP(yl,Hl,Rl, x̂
−
l ,P

−
l )

4: Transmit: x̂l to neighbours n ∈ N out
l

5: Receive: x̂n as zn from neighbours n ∈ N in
l

6: (x̂−
l ,P

−
l )← linpred(σx, ρ, σw, {zn}

T
n=1)

7: until (ηl ≥ η′
l)

Output: x̂l

Input to the algorithm is the measurement yl and prior knowl-

edge Hl, K, σx, ρ, σw. In the Initialization phase, the prior estimate

x̂l = 0 is formed. The residual norm η is also initialized and is

used in the algorithm as a stopping criterion. For all variables in the

algorithm, the prime ′ is used as symbol for the previous iterations

values, for example is η′ the value of η from the previous iteration.

In step 3 of the iteration the algorithm in node l forms an esti-

mate x̂l based on the measurement yl and prior prediction x−
l ,P

−
l ,

using the underlying predictive subspace pursuit algorithm, PrSP. In

step 4, this estimate is then transmitted to outgoing neighbour-nodes

N out
l . In step 5, the node similarly receives estimates from its in-

coming set of neighbours N in
l which are locally collected in vectors

denoted by zn, where n ∈ N in
l . In step 6, based on the received

signal estimates, the node uses the linpred to form a prediction,

which in the next iteration is used as prior knowledge for PrSP.

The algorithm stopping criterion is based on that the residual

norm in the l’th node does not decrease.

4. SIMULATIONS

In the simulations we are interested in comparing DPrSP with SP

and previous distributed greedy pursuit algorithm DiSP [18]. As a

4635



0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
−2

0

2

4

6

8

10

12

14

16

α

S
R

E
R

 [
d
B

]

 

 

Oracle

DPrSP

DiSP

SP

Fig. 2. SRER vs α for DPrSP, SMNR = 10 dB, ρ = 0.9

reference we also show an oracle which, based on knowing the true

support-set uses the least-squares approach to find its solution.

All simulations contain noise, described by the signal-to-

measurement-noise-ratio (in dB), SMNR = 10 log10
E{‖x‖22}

E{‖w‖22}
=

10. Note that we drop the subscript l because we are averaging

over all nodes l. To compare the algorithms, the performance

measure chosen is the signal-to-reconstruction-error-ratio (in dB)

SRER = 10 log10
E{‖x‖22}

E{‖x−x̂‖22}
. We emulate a connected network

with a binary connection matrix C, where a “1” in cij corresponds

to a connection from node i to node j. In any CS setup, all sparse

signals are expected to be exactly reconstructed if the number of

measurements are more than a certain threshold value. The com-

putational complexity to test this uniform reconstruction ability is

exponentially high. Instead, we can rely on empirical testing, where

SRER is computed for random measurement matrix ensemble. We

define the fraction of measurements as α = M

N
.

Based on the performance SRER, we show the performance for

different values of α, SMNR by simulations as follows:

1. Fix the connection matrix C so that each node has two in-

coming and two outgoing neighbours.

2. Randomly generate:

• A set of M×N sensing matrices {Al}
L

l=1 where the com-

ponents are drawn from an i.i.d. Gaussian source (am,n ∼
N

(
0, 1

M

)
) and scale the columns of Al to unit-norm.

• Support-sets I of cardinality K. The support-sets are uni-

formly chosen from {1, 2, ..., N}.
• A set of signal vectors {xl}

L
l=1 where the non-zero com-

ponents in the vectors are chosen at random according to

the signal model in section 2.1 so that the components are

uncorrelated at node l, but correlated between all different

nodes, with correlation parameter ρ.

3. Compute the measurements yl = Alxl+wl, ∀l ∈ {1, 2, ..., L}.
Here wl ∼ N (0, σ2

l IM ).

4. Apply the CS algorithms on the data {yl}
L
l=1. The connection

matrix C is used to distribute the data in the network.

We generate 2 · 102 sensing matrices and 2 · 102 signal vectors.

In all simulations we have a network consisting of ten sensor nodes

with two outgoing and two incoming connections. Thus, for the

plots, each data-point is evaluated over 4 · 105 realizations.

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

SMNR [dB]

S
R

E
R

 [
d
B

]

 

 

Oracle

DPrSP

DiSP

SP

Fig. 3. SRER vs SMNR for α = 0.25, ρ = 0.9

4.1. Results

For all figures presented here, we are using the common support-set

model with correlated data, as described in section 2.1. The DiSP

algorithm which we compare against is a more general algorithm

and can also operate in other scenarios. Furthermore, the network

is restrictively connected, as described in section 2.2 and we may

experience better performance with a better connected network. All

gains in performance for any user l for DPrSP comes at the price of K

integers and real valued numbers (Îl and x̂[I],l) at each transmission.

In Figure 2, we study how the DPrSP algorithm performs when

increasing the number of measurements for each node. The SMNR

is set to 10 dB, and we notice a clear increase of performance for

DPrSP compared to both a disconnected solution (SP) and the com-

peting DiSP algorithm. At α = 0.24, DPrSP performs about 4 dB

better than SP and about 2.5 dB better than DiSP. The reason DPrSP

outperforms DiSP is because it combats the measurement-noise bet-

ter since it forms an estimate based on data from many sensor nodes

with independent noise. All algorithms scale with increasing α.

In Figure 3, we further see how DPrSP handles noise. For all

regions depicted here, it is clear that DPrSP always outperforms SP.

What is particularly interesting, however, is the performance gain

over DiSP that is achieved in the lower SMNR regions. At SMNR = 5,

DPrSP is almost 3 dB better than DiSP. At higher SMNR the perfor-

mance of DPrSP and DiSP converge towards the oracle bound.

While running the simulations we have tried other values of ρ.

Due to space limitation we do not show these results here, but we

noticed that the algorithm performs well also for smaller values of ρ.

5. RELATION TO PRIOR WORK AND CONCLUSION

We derive a predictor for incorporating the PrSP (from prior work [23])

algorithm to solve a distributed CS (as in prior work [18]) setup

where the underlying model is based on the common support-set

model (defined in [11]) and the assumption that the data is corre-

lated among the sensor nodes. Based on this predictor we develop

a new distributed algorithm that provides improved performance

compared to the current distributed greedy search algorithm DiSP.

This improved performance is possible by exploiting correlation in

the measured signal. The communication overhead for the DPrSP

algorithm is slightly higher than that of DiSP although still low.
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