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Abstract—We propose a Sub-Nyquist sampling scheme using only
one mixer, one filter bank with M subfilters and M low rate ADCs.
Compared to the MWC (Modulated Wideband Converter) system in [1],
the proposed sampling system has several complexity advantages. First,
due to the use of only one mixer, the hardware complexity for analog
circuits is significantly reduced. Moreover, the system only needs one PN
sequence and thus the search complexity for the best sequence is greatly
reduced. The use of the best sequence enables the proposed system to
achieve a smaller mean square error (MSE) between the original and the
reconstructed signals than that of the MWC system. Simulation results
are provided to show the performance superiority of the proposed system
in terms of MSE and recovery percentage.

Index Terms — Compressive sensing (CS), sub-Nyquist sam-
pling, spectrum blind reconstruction, modulated wideband converter
(MWC), random demodulator (RD).

I. INTRODUCTION

Compressive sensing (CS) is proposed recently for the acquisition
of sparse signals using a sampling rate significantly lower than
Nyqiust rate. The reconstructed signals in compressive sensing can
be treated as a solution of the 1-norm optimization problem [2].
Moreover, CS has been particularly influential in contributing insights
into the design of wideband receivers, see e.g. [1], [3] and [4].

Using a wavelet edge detector with the derivative of the power
spectrum density, and matrix algebraic operations, the authors in
[3] presented a compressive wideband spectrum sensing scheme for
cognitive radios. Also, a method called random demodulator (RD)
was recently introduced as a wideband receiver for reducing the
sampling rate below Nyquist rate [4]. This approach, however, should
implement the hardware with a very high rate pseudo-random mixer
which leads to huge computational complexity of signal reconstruc-
tions for DSP processors. Thus, a scheme called the modulated
wideband converter (MWC) is proposed in [1] to overcome this
issue. The MWC mitigates the need of a high bandwidth and hence
reduces the complexity of designs. More specifically, the MWC
design consists of an analog frond-end with several branches. In each
branch, the input signal is multiplied by a pseudo-random periodic
waveform, lowpass filtered, and then sampled by a low rate ADC.
However, this MWC method needs several branches that consist
of many sets of mixers, lowpass filters and ADCs, and thus the
complexity of the hardware is still high. Moreover, since there are
several mixers in MWC, the system needs to determine several sets
of the most suitable PN sequences for these mixers. Although this
can be done off-line, it may still be a difficult task. For instance, if
the number of branches is 35 and the PN sequences are of length
511. Then, the search effort for the best 35 PN sequences is to
choose the 35 best sequences from 29 + 1 candidates. Therefore the
computational complexity is usually prohibitive in this case.

In this paper we propose a novel sub-Nyquist sampling scheme
using only one mixer, one filter bank with M sub-filters and M
low rate ADCs. We also apply quadrature-mirror-filter (QMF) design
method for implementing the filter bank which is commonly used in
multi-resolution systems. A pair of filters split the input signal into
two bands, namely high-passed and low-passed signals, and result a

critically sampled two-channel representation of the original signal.
The process will be carried further until the filter bank divides the
signal into M subbands. QMF is a mature technique using analog
or digital filter designs with CMOS circuits. Paper [5] designed an
analog QMF, a tree-structured filter bank realized in 0.35 µm CMOS
technology, with switched capacitor FIR filters. Compared to the
MWC method that uses one low filter on M paths, the proposed
structure requires a filter bank. Except this minor disadvantage, the
proposed front-end has several implementation advantages: First, due
to the use of only one PN generator and one mixer, the complexity
of analog circuit design and the effort for timing synchronization
between M paths are significantly reduced. Moreover, we find the
compressive sensing (CS) matrix of the proposed structure is a
Toeplitz matrix. As a result, the matrix computations can also be
dramatically simplified. Furthermore, the system only needs one PN
sequence and thus the search complexity for the best sequence is
greatly reduced. The use of the best sequence enables the proposed
system to slightly outperform the MWC system in terms of MSE.

Notations. Let s(t), s[n], S(f) and s(f) denote the continuous-
time signal, discrete-time signal, Fourier transform of s(t) and vector
that depends on a continuous parameter f , respectively. The notations
Mi, M

∗, M
H and M

† respectively represent the ith row of M,
conjugate, conjugate transpose, and pseudo-inverse of matrix M. ⌈·⌉
denotes the ceil operator.

II. SYSTEM MODEL OF PROPOSED SCHEME

This paper considers wideband signals, which has sparsity in
frequency domain. Let the Nyquist frequency of the signal be W .
We assume there are N narrowband sparses with each bandwidth of
sparse is less than B. Due to the sparsity of the signal, NB ≪ W ,
and such sparse signal is also called “multiband” signal. The fre-
quency spectrum of a multiband signal is shown in Fig. 1(a) for
instance.

The idea of proposed scheme is the multiband input signal s(t)
is multiplied by a mixing function p(t) and the frequency spectrum
P (f) of a multiband signal is shown in Fig. 1(b) for instance. The
frequency spectrum of the modulated signal, e.g. a PN sequence, is
the multiband input signal S(f) convoluted by the mixing function
P (f), if the modulated signal is passed into an ideal lowpass filter.
Thus we can obtain a baseband signal as shown in Fig. 1(c) for
instance, and this frequency spectrum is one of the branch output
of the MWC system. To capture sufficient signal information, the
MWC system need to use several different PN sequences, and this
requires several mixers. As mentioned in Introduction, the design
effort increases as the number of mixers increases. To avoid using
multiple mixers, we notice that the frequency information of the
modulated signal is distributed in all frequency spectrum likes that
shown in Fig. 1(d). Therefore we can use a filter bank to capture all
the frequency information and then reconstruct the sparse signal. By
doing this, we only need one mixer.

The proposed Sub-Nyquist sampling scheme is shown in Fig. 2,
where there are one mixer, M subfilters and M ADCs. Note that
if M is sufficient large, the proposed scheme does not need prior
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Fig. 1: Frequency spectrum illustration. (a) Frequency spectrum of
a multiband signal, (b) Frequency spectrum of a mixing function,
(c) Frequency information of MWC system after lowpass filtering
(in one of the branches), (d) Frequency information of the proposed
system by using filter bank.
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Fig. 2: A block diagram of the proposed sampling system which
consists of one mixer, a filter bank with M subfilters and ADCs.

knowledge of the sparse locations to reconstruct the original signal.
Later we will show the relationship between M and N for a robust
reconstruction. As shown in Fig. 2, the input signal s(t) is multiplied
by a mixing function p(t), which is Tp-periodic. Assume 1/Tp ≥
B, after mixing, the modulated signal is passed into the M -branch
filter bank and ADCs. Assume the sampling rate of ADCs be 1/Ts.
The modulated signal s̃(t) is truncated by the subfilters, which have
different central frequencies and the same cutoff frequency 1/(2Ts).
Let the frequency response of the mth subfilter be Hm(f). In general,
the sampling frequency of each branch is low enough so that the
ADCs can be designed with less technical efforts and lower power

consumptions. The four design parameters to be determined are M ,
Tp, Hm(f) and p(t) as described in the following section.

III. PROBLEM FORMULATIONS

In this section, we explain the properties of the proposed scheme
in frequency domain. For the mixing function p(t), it can be chosen
as a piecewise continuous-time function that takes values ±1 with
equal probability for each of the P equal time intervals, i.e.

p(t) = βk, k
Tp

P
≤ t ≤ (k + 1)

Tp

P
, 0 ≤ k ≤ P − 1, (1)

where βk ∈ {+1,−1}, p(t) = p(t + nTp) for every n ∈ Z and
1/Tp = fp. We can choose a periodic pseudo-random sequence as
the mixing function p(t) for the proposed scheme. Since the mixing
function p(t) is Tp-periodic, it has a Fourier expansion given by

p(t) =
∞
∑

i=−∞

cie
j 2π
Tp

it
, (2)

The Fourier transform of the modulated signal s̃(t) = s(t)p(t) and
can be shown to be [1]

S̃(f) =
∞
∑

i=−∞

ciS(f − ifp). (3)

Next let us define Hm(f). In this paper, we assume the number of
subfilters is arbitrary. For description convenience, we describe the
filter band in the positive frequency band that the first subfilter H1(f)
is an ideal lowpass filter and the other subfilters are ideal bandpass
filters defined as

Hm(f) =

{

1 (m−1)
2

fs ≤ f ≤ m
2
fs

0 otherwise
, 1 ≤ m ≤ M, (4)

where 1/Ts = fs is the sampling frequency of the ADCs. For the
proposed system, the sampling rate of the ADCs satisfies fs = qfp
with q ∈ N, where q is the sampling factor.

Now let us look at the sampling signal ym[n] in Fig. 2. From (3),
originally the modulated signal s̃(t) is an infinite linear combination
of fp-shifted copies of S(f). After passing to the subfilter Hm(f),
however, it becomes a finite linear combination, thus ym[n] can be
expressed as

Ym(f) =
I
∑

i=−I

ciS(f − ifp), f ∈
[

(m− 1)

2
fs,

m

2
fs

]

, (5)

where the value of I is calculated by

I =

⌈

W + fs
2fp

⌉

− 1. (6)

Let us describe the signal processing between signal ỹm(t) and
ym[n] in Fig. 2. For ỹ1(t), which is a baseband signal to be filtered
by the lowpass filter H1(f), the output ym[n] is exactly the sampled
signal from the ADC. For ỹm(t), m 6= 1, however, which are
bandpass signals and their modulated frequency are higher than the
sampling rate of the ADCs, we need to apply the bandpass theory and
let fs = qfp, q ∈ N, to avoid aliasing [6]. In this case, each of the
resulting signal ỹm(t), m 6= 1 is not aliasing, and may be regarded as
an interpolated signal which has several copies in frequency domain.
By passing ỹm[n], m 6= 1 into a digital ideal filter with passband
in [0 fs/2], or a proper downsampling process (see e.g. [6]), the
resulting signal zm[n], m 6= 1 is a baseband signal with information
contained in [0 ,+fs/2]. For analysis convenience, we let fs = fp
and the DTFT of zm[n] be Zm(f), which can be expressed as

Zm(f) =

I
∑

i=−I

ciS(f − (i−m)fs), f ∈
[

0,+
fs
2

]

(7)
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The equation in (7) can be represented by a matrix form, i.e.

Zm(f) = φ1xm(f) (8)

where
φ1 =

[

c−I · · · c0 · · · cI
]

, (9)

and

xm(f) =
[

S(f + (I −m+ 1)fp) · · ·S(f − Ifp) 0
T

]T
,

(10)
is a (2I + 1)× 1 column vector with its last m− 1 elements being
zeros. It is equivalent to rewriting (8) as

Zm(f) = φ1xm(f) = φmx1(f), (11)

where
φm =

[

0
T c−I · · · cI−m+1

]

, (12)

with its first m− 1 elements being zeros. Let us collect the M φm

vectors from the M branches and define the matrix Φ as

Φ =
[

φT
1 φT

2 · · ·φT
M

]T
.

Then, (11) can be rewritten in a matrix from given by

z(f) = Φx1(f), (13)

where
z(f) =

[

Z1(f) · · · ZM (f)
]T

,

and Φ ∈ C
M×(2I+1) is referred as the CS (compressive sensing)

matrix. We find that the CS matrix of the proposed scheme is a
Toeplitz matrix. For instance, let I = 3 and M = 3, then the matrix
Φ can be expressed as

Φ =





c−3 c−2 c−1 c0 c1 c2 c3
0 c−3 c−2 c−1 c0 c1 c2
0 0 c−3 c−2 c−1 c0 c1



 .

About the coefficients ci in matrix Φ, they can be obtained by
performing the Fourier transform of the βk , i.e. [1]

ci =
1

P

P−1
∑

k=0

βke
−j 2π

P
ik, for − I ≤ i ≤ I.

Thanks to the Toeplitz structure of matrix Φ, the storage requirement
is only 1/(2M) of that in the MWC scheme [1]. For instance, later
in the simulation results, we would like to handle a 10 GHz signals
by M = 35 branches. In this case, the proposed scheme requires a
memory size of around 100×1, whereas the MWC scheme demands
the memory size of 100 × 35.

A. Relationship Between fs, fp and B

Let us discuss the relationship between the sampling rate fs, the
chip rate fp and the subband signal bandwidth B. First, to ensure
satisfactory reconstruction. We demand fp ≥ B. The reason is that
from (3), the two copies signals S(f − ifp) and S(f − (i + 1)fp)
do not overlap too serious when fp ≥ B. Without this condition,
the copies of S(f − ifp) for different i are seriously overlapping
and perfectly reconstruction is not possible even if the system is in
a noise-free environment. That is, this condition helps preserving the
sparsity property of the signal x1(f) defined in (10) and hence there
are at most N nonzero elements in x1(f). Second, we should let
fs = qfp ≥ B, q ∈ N. That q must be an integer is to satisfy
the condition for bandpass theory discussed in Sec. 2. Moreover, for
large q, the number of branches decreases and thus the numbers of
ADCs and the subfilters also decrease.

B. Signal Reconstruction

Next let us discuss how to reconstruct the compressed signal: the
authors in [1] proposed a method, called continuous to finite (CTF) to
reconstruct x1(f) by solving a compressive sensing (CS) problem.
Let z[n] be the IDTFT of z(f). In order to use CTF, we need to
obtain a frame V for the measurement set, Such a frame can be
obtained by computing

R =

∫

f∈fs

z(f)zH(f)df =

∞
∑

n=−∞

z[n]zH [n].

Then perform the matrix decomposition (EVD) of R, i.e. R =
VV

H . The matrix V can be expressed as

V = ΦX,

where the joint sparsity of X equals to the sparsity of x1(f) [7] and
solving X is referred to as a multiple measurement vectors (MMV)
problem [8]. By observing the sparse location of X, we know which
columns of Φ should be used to reconstruct the signal, denoted the
matrix consisting of these columns by Φλ. Then the signal xλ[n]
can be obtained by

xλ[n] = Φ
†
λz[n].

Once having xλ[n], we can reconstruct the original signal by mod-
ulating the elements of xλ[n] to the corresponding frequencies and
then can combine the modulated signals and if MMV is used, the
authors in [1] have shown the relationship between M and N for a
satisfactory reconstruction should be

M ≈ 4N log (P/2N). (14)

IV. SIMULATION RESULTS

We conducted computer simulations to validate the performance
of the proposed scheme. According to the parameter settings in [1],
the system conditions are as follows: A radio signal consists of three
pairs of bands (N = 6), with each bandwidth B = 50 MHz, and
this radio signal is formulated as

x(t) =

3
∑

i=1

√
EiBsinc(B(t− τi)) cos 2πfi(t− τi). (15)

where sinc(x) = sin (πx)/(πx). The carrier frequencies fi are
chosen randomly in [−W/2,W/2] with W = 10 GHz, also the
energy and time offset are Ei = {1, 2, 3} and τi = {0.4, 0.7, 0.2}µs,
respectively. For the mixing function p(t), since Gold sequences are
claimed in MWC scheme [9] having the best performance compared
with other binary sequence families, we use Gold sequence of
29 − 1 in our simulations. Fig. 3 validates the proposed scheme can
reconstruct the original spectrum accurately by using parameters of
P = 200, fs = fp = 50 MHz, M = 25 and signal-to-noise ratio
(SNR) = 20 dB. We also compute the normalized MSE between the
reconstructed signal and the original signal for the proposed scheme,
and then compared the MSE performance with MWC scheme [1].
The normalized MSE is defined as ‖x̂(t)− x(t)‖2/‖x(t)‖2. For the
MWC method, since it needs M mixers to implement the system,
we randomly choose M Gold sequences to construct CS matrix Φ,
because the computational effort to search exhaustively the best M
sequences from 29+1 Gold sequences may be somewhat impractical.
For the proposed system, since we only need one mixer, the search
for the best Gold sequence is much easier, and this advantage reflects
on the better MSE performance as shown in Fig. 4. Moreover, Fig. 5
shows that the MSE performance is obtained by a chosen Gold
sequence is better than a randomized Gold sequence. Note that the
chosen Gold sequence is obtained by exhaustive search. This result
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Fig. 3: Reconstruction of multiband signal. (a) Time domain waveform of the original signal, (b) Time domain waveform of the noisy signal,
(c) Time domain waveform of the original and reconstructed signal (dotted line), (d) Spectrum of the original signal, (e) Spectrum of the
noisy signal, (f) Spectrum of the original and reconstructed signal (dotted line).
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presents the proposed system improves the MSE performance by
carefully choosing a sequence because only one sequence is needed.
On the other hand, MWC system needs several sequences and thus
the required exhaustive search may cost a huge computational com-
plexity. Finally, Fig. 6 shows that the percentage of correct support
recoveries for various branches vs. SNRs. This result presents that at
high SNR regime the correct support recovery is achieved when the
proposed scheme uses the number of branches M ≥ 35. Further,
the ratio of the Nyquist rate and the sampling rate of proposed
scheme with 35 branches is equal to 0.15. Besides, the describes the
relationship between Fig. 6 and 4N log (P/2N) ≈ 30 of equation
(14). The results confirm the proposed sub-Nyquist sampling scheme
works well and is a promising structure for compressive sensing of
sparse wideband signals.

V. CONCLUSION

In this paper, we presented a novel Sub-Nyquist sampling system.
The scheme significantly reduces the design complexity because
it only needs one mixing function with a Toeplitz-structured CS
matrix, therefore using one mixing function can decrease designed
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Fig. 6: The percentage of the correct support set recovery as a
function of the number of branches and the SNR.

complexity of CS matrix that property of the CS matrix affect
performance of reconstruction strongly. From the simulation results,
the proposed system slightly outperforms the MWC system in terms
of MSE, which reflects the advantage of using of the best PN
sequence on the proposed system.
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