
TOPOLOGY OPTIMIZATION FOR A TRADE OFF BETWEEN ENERGY COST AND
NETWORK LIFETIME IN AVERAGE CONSENSUS

César Asensio-Marco, Daniel Alonso-Román, Fernando Camaró-Nogués, Baltasar Beferull-Lozano
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ABSTRACT

Consensus algorithms are simple processes that involve
repeated communications between the nodes of the network
until a consensus is reached with certain accuracy. In this set-
ting, the lifetime of the network and the total required energy
not only depend on the number of iterations needed to achieve
consensus, but also on the power consumption per node and
iteration. In this work, we propose a method to optimize the
network topology in order to reduce the total energy required
to achieve consensus while increasing the network lifetime.
Our solution is based on an optimization technique that per-
forms a tradeoff between these two concepts. Simulation re-
sults, under different types of networks, are presented to show
clearly the efficiency and validity of our approach.

Index Terms— Complex Networks, Average consensus
algorithms, Convex optimization

1. INTRODUCTION

Average consensus algorithms have attracted a great deal of
research work in recent years because of their simplicity.
These are in-network processes, in the sense that each node
is able to obtain global information as a function of some ini-
tial data by only exchanging information with its immediate
neighbors [1][2]. In spite of the simplicity and decentralized
nature of consensus algorithms, since they are inherently iter-
ative it is incurred in a repeated communication cost, whose
minimization is crucial.

Although the energy constraints of the nodes forming the
network depend on the system being modeled, it is generally
of great interest to reduce the energy requirements of the al-
gorithm being executed. In particular, the energy cost of the
average consensus algorithm depends on two factors closely
related to the topology of the network. On the one hand, the
number of iterations needed to reach consensus with certain
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accuracy is given by the algebraic connectivity of the under-
lying graph [3]. On the other hand, the power consumption of
the nodes in each iteration depends on the number of edges of
this underlying graph.

Most of the related work [4-6] only focuses on reducing
the convergence time, by increasing the value of the alge-
braic connectivity of the network. However, besides reducing
the number of iterations to reach consensus, it is crucial to
decrease the power consumption in each of these iterations.
Some relevant works in this direction are [7] and [8], where
it is shown how to jointly reduce both terms by redesigning
the network topology. Nevertheless, if the energy available
at a node is supplied by batteries, it is also important to con-
sider the concept of network lifetime. It indicates the total
time that the network is able to correctly operate before a cer-
tain number of nodes run out of batteries. This concept is
crucial in the execution of an average consensus process be-
cause the final achieved value is influenced by the state of all
the nodes. Moreover, it is not always true that the network
lifetime is maximized when the total energy consumption is
minimized. For example, the work in [8] reduces the total en-
ergy consumption at the expense of reducing the lifetime of
some nodes because these perform many communications.

In this paper we present an optimization problem that
presents a tradeoff between the total energy required to
achieve consensus, and the maximum power consumption
per node. Thus, our problem controls the importance of each
of these two parameters in the final solution. It is based on
the minimization of a multi-objective function, where the
network topology is optimized. Additionally, we present sev-
eral simulation results showing the differences between the
solutions corresponding to different graph models.

The remainder of this paper is structured as follows: some
background on consensus problems is presented in Section
II. In Section III, we present an optimization method whose
solution is a trade off between energy cost and network life-
time. Section IV presents some simulation results to verify
and show clearly the efficiency of our approach. Finally, the
conclusions of this work are summarized in Section V.
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2. PROBLEM FORMULATION

In this section, we revise some graph theory and consensus re-
lated concepts that we use throughout this paper. First, when
an information flow exists among the nodes of a network, we
can model it as a graph G = (V,E), consisting of a set V
of N nodes and a set E of edges. We denote an edge as a
pair of nodes (i, j). Given a graph, it can be defined the
N × N adjacency matrix A, where an entry [A]ij is equal
to 1 if (i, j) ∈ E and 0 otherwise. The set of neighbors of
a node i is defined as Ωi = {j ∈ V : (i, j) ∈ E} and the
degree matrix D is a diagonal matrix, whose entries are given
by di =

∑
j∈Ωi

[A]ij . Then, the Laplacian of a graph is a
matrix defined as L = D −A, whose smallest eigenvalue is
equal to zero.

Let us assume that nodes have some initial data at time
instant t = 0. We collect them in a initial vector x(0), whose
average is xavg = 11T x(0)

N , where 1 denotes the all ones col-
umn vector. We consider the general linear update of the state
of each sensor i at time instant t, given by:

ẋ(t) = −Lx(t) (1)

If the graph is undirected, the matrix L is positive
semidefinite by construction, and the convergence to the
average of the iterative process described in (1) is then en-
sured. The convergence time Tconv of this linear update is
defined in [1] as the time required by the slowest mode of (1)
to be reduced by a factor ρ < 1 , and can be expressed as
Tconv = −Ts log (ρ)

λ2(L) , where Ts is the duration of a time slot
unit and λ2(L) is the so-called algebraic connectivity.

In this work, we propose the problem of optimizing the
network topology involving a multi-objective function. First,
we focus on minimizing the total energy required by the net-
work to achieve consensus. Considering the factor ρ to be
small enough, this energy is the product between the total
power consumed per iteration by the whole network Piter, and
the convergence time. In a formal way, we have the following:

Etot = TconvPiter = Tconv

∑
i∈V

Pi = Tconv

∑
(i,j)∈E

pij (2)

where Pi is the power consumption per iteration of node i,
and pij is the power that node i requires to successfully com-
municate with node j. For simplicity, we assume a generic
path loss model pij = pminr

γ
ij , where pmin is the minimum

power required at the receiver to successfully decode the in-
coming information, rij is the distance between nodes i and j
and γ is the path loss exponent. Specifically, γ = 0 makes the
power distribution among the nodes equal to the degree dis-
tribution, γ = 1 implies a linear cost and γ ≥ 2 represents the
signal attenuation associated with wireless communications.

Besides, consensus algorithms require all the nodes to
converge to the average of the initial values [1][2]. It im-
plies that the process is ruined as soon as any of the nodes

runs out of batteries. Therefore, in order to maximize the life-
time of the network, we are also interested in minimizing the
power consumption of the node that consumes more power,
that is, Pimax = max(P1, P2, . . . , PN ). This quantity depends
on the network model being considered, as we explain later.
In a more formal way, we are interested in maximizing the
following expression:

L =
Enode

TconvPimax

(3)

where Enode is the total energy available at the nodes, as-
suming that every node present the same energy capabilities.
Therefore, this expression determines the number of consen-
sus processes that can be executed in the given network before
the first node runs out of batteries. If the network includes
nodes having different energy capabilities, the equivalent
amount to maximize would be mini(

Ei
TconvPi

).
Finally, it is of great interest to ensure that the result-

ing graph belongs to a specific model, which determines the
nodes capabilities and the set of edges to be considered. For
example, the nodes in a Wireless Sensor Networks present
hard constraints in terms of power, which implies that they
can communicate only with their nearest nodes. This type of
network has been successfully modeled by using Random Ge-
ometric Graphs (RGGs) [11]. Other networks such as Internet
can be modeled as Scale Free Graphs (SFGs) [12]. Finally,
biology systems exhibit a behavior that can be modeled with
Small World Graphs (SWGs) [13]. All these graph particular-
ities should be considered in our problem.

3. OPTIMIZATION METHOD

Our problem is to obtain the best topology for a consensus
process under some specific graph constraints, such that the
weighted sum of the total energy consumption in (2) and the
inverse of the network lifetime in (3) is minimized. The corre-
sponding optimization problem can be formulated as follows
(P1):

minimize{A} β
Pimax (A)
λ2(L(A)) + (1− β) Piter(A)

λ2(L(A))

s. t. ξ ≤ λ2(L(A))
A = AT

[A]ij ∈ {0, 1}

where ξ is an arbitrary small positive constant to ensure that
the resulting value of λ2(L(A)) is greater than zero and β
is a constant between 0 and 1 that controls the trade off be-
tween the total energy consumption and the lifetime of the
network. The variation of β gives the Pareto-optimal points
of P1. The objective of P1 is to find the entries of the ad-
jacency matrix A that minimize the multi-objective function
β
Pimax (A)
λ2(L(A)) + (1− β) Piter(A)

λ2(L(A)) . Hence, we have made explicit
the dependence of the Laplacian L, Pimax and Piter, on A.
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(b) RGG constraint
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(c) SWG constraint

Fig. 1. Example of three different graphs generated from the same random deployment and applying Algorithm 1 with
ath = 0.45 and β = 1

2 . (a) Topology obtained without considering any specific graph model, which yields Pimax = 0.0136,
Piter = 0.5707 and λ2(L(A)) = 9.822 (b) Random Geometric Graph model, which yields Pimax = 0.001, Piter = 0.0225 and
λ2(L(A)) = 0.6529. (c) The equivalent Small World Graph model yields Pimax = 0.0013, Piter = 0.04 and λ2(L(A)) = 0.938.

The problem P1 is a combinatorial one because of the bi-
nary variables constraint. In order to obtain a polynomial time
solvable problem, we introduce a relaxation consisting on as-
suming the entries of A to be real variables between 0 and
1, which results in a fractional convex-concave problem. To
solve it, we introduce the following function [10]:

h(µ) = min {βPimax(A) + (1− β)Piter(A)− µλ2(L(A))}

which allow us to solve the original problem P1 by applying
Algorithm 1. This algorithm is based on repeatedly solve the
following optimization problem (P2):

min.{s,A} s
s. t. βP1(A) + (1− β)Piter(A)− µλ2(L(A)) ≤ s

...
βPN (A) + (1− β)Piter(A)− µλ2(L(A)) ≤ s
ξ ≤ λ2(L(A))
A = AT

0 ≤ [A]ij ≤ 1

which can be easily obtained from P1 by applying standard
optimization tools [9].

Additionally, in order to ensure that the resulting graph
obtained by using Algorithm 1 belongs to a particular graph
model: RGG, SWG, etc., we introduce additional topological
constraints to the problem P2. For example, in the particu-
lar case of considering a RGG, the transmission range of the
nodes is limited to a maximum distance R, so that, several
of the entries of the resulting matrix A are fixed to zero, that
is, A ∈ ARGG = {M ∈ RN×N : [M]ij = 0 if rij > R}.
Equivalently, a SWG can be obtained in a similar way than a
RGG, by allowing a small set of nodes to establish extra long

links (shortcuts). Similar constraints can be obtained for other
graph models. Fig. 1 shows an example of the effect of these
additional constraints on the solution graph.

Finally, the problem P2 can be shown to be convex, which
implies that it can be efficiently solved by using numerical
tools. Thus, applying the Dinkelbachs’s algorithm [10], we
are able to obtain the optimal value of the parameter µ, which
is equivalent to the optimal value of the relaxation of the orig-
inal problem P1, as described by Algorithm 1.

The result that is obtained from Algorithm 1 are the en-
tries [A]ij of the adjacency matrix, which define the network
topology. The value of the parameter ε in Algorithm 1 de-
termines the precision of the algorithm, that is, how close its
solution is from the optimal one of the problem P1. However,
due to the relaxation procedure, these matrix coefficients are
real variables belonging to the interval [0, 1], instead of bi-
nary values that determine the presence or absence of a spe-
cific link. Thus, in order to obtain a real network topology,
entries with smaller values than a predefined threshold ath are
removed. For a given solution, the choice of ath determines
the final topology. As ath approaches 0, total connectivity is
obtained. On the other hand, for values of ath above certain
value, the network becomes disconnected. This choice affects
both the total required energy and the network lifetime, as it
is shown in Fig. 2.

Algorithm 1
Require: ε
Ensure: βPimax(A) + (1− β)Piter(A)− µλ2(L(A)) ≤ ε

Set matrix A as a feasible solution
while βPimax(A) + (1− β)Piter(A)− µλ2(L(A)) > ε do

set µ as βPimax (A)+(1−β)Piter(A)
λ2(L(A))

Solve P2 with the current µ
end while
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(a) Lifetime of the network
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(b) Total required energy

Fig. 2. Lifetime of the network and total required energy as a function of the applied threshold. The results of different values
of the parameter β are compared (β = 1, β = 0 and β = 1

2 ). The solid lines represent the corresponding relaxed solutions.

4. NUMERICAL RESULTS

Our simulation setup includes N = 50 nodes randomly
placed in a square area of L = 200 meters side. The power
that each node requires to reach other node is computed by ap-
plying a simplified path loss model, with a path loss exponent
γ = 3, a signal to noise threshold Φ = 10, and a background
noise N0 = 10−10 mW., such that pij = ΦN0r

γ
ij , expressed

in mW. Finally, we assume Enode = 1 and Ts = 1 ms.
Fig. 1 shows three topologies resulting from applying Al-

gorithm 1 with a) no topological constraints, b) the RGG con-
straint and c) the SWG constraint. It is interesting to see how
the network model considered affects the solution graph. The
RGG in Fig. 1 b) has been generated by constraining the con-
nectivity range to 80 meters, while some random nodes are
allowed to establish extra large links (shortcuts) in the SWG
shown in Fig. 1 c). The size of these shortcuts depend on
the value of the path loss exponent. As it increases, the size
of these shortcuts decreases. Furthermore, since the nodes
involved in the shortcuts are incurring in an extra energy con-
sumption that affects the value of Pimax , other nodes establish
extra links, increasing Piter as a consequence. In spite of that,
since the value of λ2(L(A)) is significantly increased, the to-
tal required energy Etot and the network lifetime L are both
improved with respect to Fig. 1 b).

Fig. 2 shows the averaged results of applying Algorithm
1 (no particular graph model considered), where the x-axis
represents the applied threshold. Fig. 2 a) shows the lifetime
of the network, expressed in number of consensus processes
that can be carried out before the first node runs out of batter-
ies. The dashed blue curve corresponds to the case of β = 1,
that is, the lifetime is maximized and the total required energy
is not considered. It can be seen that a maximum is obtained
for threshold values around ath = 0.45. The blue solid line
represents the initial solution without thresholding, giving an
upper bound as a result. On the other hand, the red dashed

and pointed curve corresponds to the case β = 0, such that
the only condition is the minimization of the total required
energy. For this case, the upper bound is given by the red
straight line. The gap between both curves corresponds to
the different Pareto optimal solutions of the problem, e.g. the
green curve in the middle shows the case of β = 1/2.

Fig. 2 b) shows the total energy required to reach con-
sensus, expressed in µJules. This quantity is minimized for
β = 0, represented by the dashed red curve, and the rest of
Pareto solutions lie between this curve and the dashed blue
one. It is interesting to point out that the value β = 1/2,
represented by the green curve, yields competitive lifetime
values and quasi minimum energy consumption.

Finally, Table 1 summarizes the simulation results for the
different models of graphs considered in this paper.

Table 1. Simulation Results with ath = 0.45

Graph Lβ=1 Eβ=1
tot Lβ=0 Eβ=0

tot Lβ= 1
2 Eβ=

1
2

tot

none 795 0.037 475 0.035 734 0.036
RGG 1000 0.038 600 0.027 750 0.027
SWG 1100 0.031 440 0.024 850 0.025

5. CONCLUSIONS

In this paper, we present a multi-objective problem to opti-
mize the network topology. It presents a trade-off between
the minimization of the total energy required to achieve con-
sensus and the maximization of the network lifetime. More-
over, the solution graph is also influenced by the topological
constraints imposed to obtain a specific graph model. Simula-
tion results are presented to show the difference between the
pareto-optimal solutions for different graph models.
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