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ABSTRACT

In this paper, we consider distributed estimation when the commu-
nication time-scale is restricted to the time-scale of the dynamics.
It can be shown that this restriction may not guarantee a stable
estimation error when the data fusion is implemented only in the
observation-space. To address this issue, one has to rely on fu-
sion in the predictor-space, which alone may lead to a stable error
only when the system matrix is full S-rank (maximal rank of the
zero/non-zero structure). In this paper, we show that when the sys-
tem matrix is S-rank deficient, predictor-space fusion is insufficient,
i.e., the distributed estimator is not observable. In order to recover
distributed observability, we provide a novel measurement-based
agent classification, and subsequently, define inter-agent commu-
nication derived from this classification. The results are based on
structured systems theory and the notion of generic observability.
Finally, we provide an illustrative example to show the applicability
of the proposed schemes using an iterative Linear Matrix Inequality
(LMI) approach.

Index Terms— Distributed estimation, S-rank, structured sys-
tems theory, generic observability, graph theory

1. INTRODUCTION

Distributed estimation is where a network of agents is tasked to esti-
mate the state of a dynamical system when the agents can only com-
municate over a sparse communication network. Recently [1–4],
consensus-based estimation has been proposed as a distributed solu-
tion of this problem where the agents implement a message-passing
algorithm over the observation space between every two successive
time-steps, k and k + 1, of the system dynamics. For optimal per-
formance, this consensus-based estimator requires a consensus to be
reached that subsequently results into infinite (or very large) infor-
mation exchanges when the agent communication is sparse.

When the network is unable to implement a consensus due to,
e.g., resource-constraints or faster system dynamics, distributed so-
lutions have been proposed with finite information exchanges [5–11]
at the price of requiring an agreement over predictor-space. How-
ever, in the finite-time scenario, one first has to guarantee the exis-
tence of a communication network that will result into a bounded
estimation error, i.e., distributed observability. Clearly, the prob-
lem of distributed observability is only challenging when none of
the agents is observable alone or in its neighborhood, but only the
entire network as a whole guarantees observability; this is a typical
assumption in related work and also in this paper.

Existing work in this regard is restricted to system matrices that
have a full structured-rank (maximal rank of the zero non-zero struc-
ture) and strongly-connected communication networks [6–10] at the

price of requiring an agreement over predictor-space. For exam-
ple, [6, 7] established results on full S-rank systems where the com-
munication is assumed to be strongly-connected in the former and
weakly-connected in the latter. Distributed estimation based on mov-
ing horizon estimation [8], information theoretic approach [9], and
diffusion-based methods [10] is also proposed in the literature; all
of them requiring the system matrix to be invertible (full S-rank).
However, in many practical applications the system matrix is S-rank
deficient, e.g., detection/estimation problems in [12], Gauss-Markov
system models in [13], smart grids [14], and Type-C Wind Turbine
Generator models [15].

We use structured systems theory and the notion of generic ob-
servability. Generic properties are useful in, e.g., models where the
environment uncertainties are reflected in the system parameters.
As long as the system structure (zero/non-zero pattern) is not vio-
lated, a generic property that holds for one set of parameters also
hold for almost all choices of non-zero parameters. This leads to a
robust estimator design where the analysis is not algebraic (as in
the conventional Grammian or PBH rank tests for observability),
but graph-theoretic [11, 16–20]. In the graph theoretic approach
considered here, we employ concepts such as maximal sets, cycle
families, Strongly Connected Component (SCC) to provide a novel
agent classification. We classify agents–based on their role in global
observability–as crucial and non-crucial; and further, subdivide the
crucial agents with respect to their role in recovering distributed
observability. Subsequently, this classification leads to a network
topology design with minimal communication.

This main contributions of this paper include: (i) Only one in-
formation exchange is allowed among the agents. (ii) For a system
matrix with full S-rank, a weakly-connected network is sufficient
to guarantee observability; in addition, the requirements on the un-
derlying network topology are explicitly characterized. (iii) When
the system matrix is S-rank deficient, no agent communication net-
work can guarantee observability with agreement in the predictor-
space alone, and hence, fusion in the observation-space is required.
(iv) The results are structure-based in contrast to widely used alge-
braic (rank-based) tests for observability. (v) The proposed solutions
are shown to work with constrained LMI-based iterative gain matrix
design (see [6] for more details on this). The novelty of this work
further lies in the fact that widely-used algebraic notions are replaced
with structure-based generic notions and has applications in network
topology design for smart-grids and multi-agent systems [12–15].

We now describe the rest of the paper. Section 2 provides pre-
liminary material and terminologies. In Section 3, we present the
problem formulation along with the assumptions and the proposed
agent-classification method. We describe main results on S-rank
deficient systems in Section 4, which are further explained via an
illustrative example in Section 5. Finally, Section 6 concludes the
paper.
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2. PRELIMINARIES

Consider a discrete-time linear dynamical system:

xk+1 = Axk + vk, yk = Cxk + rk, (1)

where xk ∈ Rn is the state vector; A ∈ Rn×n is the system matrix,
and vk ∼ N(0, V ) is the system noise;C is the global output matrix;
yk is the collection of local output vectors yi

k ∈ Rmi ; rk ∼ N(0, R)
is the global observation noise with R = blockdiag[R1, . . . , RN ];
and rik ∼ N(0, Ri) is the local output noise at agent i.

Let x̂c
k|k be the centralized Kalman estimator [21] at time k

given all the observations, yk, up to time k. The error in the cen-
tralized Kalman estimator, êc

k|k = xk − x̂c
k|k, is given by

êc
k|k = (A−KcCA)ê

c
k−1|k−1 + ηk, (2)

where Kc is the centralized Kalman gain and the vector ηk collects
the remaining (noise) terms that are independent of êc

k−1|k−1. It is
well known that the centralized Kalman error, êc

k|k, is stable if and
only if (A,C) is generically observable (to be defined later).

2.1. Graph terminology

Let X = {x1, . . . , xn} denote the state set, and Y = {y1, . . . , yN}
denote the output set. We define two different graph representations:
system digraph, GA = (V,E), where V = X ∪ Y is the vertex set
representing states of the dynamic system, and E defines the edge
set representing state interaction. The other digraph, GW , deter-
mines the communication network of the agents monitoring system
states. Let GW = (VW , EW ), where VW = {y1, . . . , yN} (or, sim-
ply, VW = {1, . . . , N}) is the set of agents, EW = {(i, j) | i← j}
defines the set of communication links among agents, and Di =
{i} ∪ {j | (i, j) ∈ EW } denote the extended neighborhood of
agent i. Notice that, in contrast to existing works we do not constrain
GW to be undirected. In fact, no assumption on the topology is con-
sidered here, as designing GW is a contribution of the paper. We
omit the standard definitions of cycle, (simple) path, and Strongly
Connected Component (SCC) which can be found in [22]. We re-
view some new definitions here (see [7] for more details): in GA,
we define parent SCC as an state SCC with no outgoing edge to any
other SCC; and we call a non-parent SCC a child SCC.

2.2. Notes on Structured systems theory

Here, we present definitions and results on generic rank and generic
observability. Due to space limitation, we omit the proofs, and refer
interested readers to [11, 17–19].

Definition 1 (S-rank). S-rank (structural rank or generic rank) of
a matrix, A, is the maximal rank over all numerical values of the
non-zero entries of the matrix A.

Lemma 1. A system matrix, A, is full S-rank if and only if there
exists a disjoint family of cycles spanning all the state vertices in
GA; otherwise, the system is S-rank deficient.

Examples of S-rank deficient systems are shown in Fig. 1. For
both graphs, there are no family of disjoint cycles spanning all the
state nodes.

Theorem 1. A dynamical system is generically observable if and
only if in its system digraph: (i) every state is the begin-node of
a path that ends in an output (termed as a Y -topped path); and (ii)
there exists a disjoint union of Y -topped paths and cycles that covers
all the state vertices.

Fig. 1. S-rank deficiency: (a) undirected and (b) directed graph
(along with observation vertices).

As an example consider the system shown in Fig. 1(b). It can
be verified that each state is a begin-vertex of a Y -topped path,
and {(x1, x6), (x4, x5), (x3, x2, yA)} constitute a disjoint family
of cycles and Y -topped paths. Thus, the system is generically
(A,C) observable.

Lemma 2. The condition (ii) in Theorem 1 on the generic observ-
ability of (An×n, CN×n) is equivalent to S-rank([AT CT ]T ) = n.

3. DISTRIBUTED KALMAN-TYPE ESTIMATOR

Let x̂ik|m be the state estimate at time k and agent i given the outputs
up to timem, (m ≤ k), from agent i and its neighbors, j ∈ Di. Each
agent implements the following variant of distributed Kalman-type
Estimation (DKE) as proposed in [6, 7]:

x̂i
k|k−1 =

∑
j∈Di

wijAx̂
j
k−1|k−1, (3)

x̂i
k|k = x̂i

k|k−1 + Ki
k

∑
j∈Di

CT
j (yjk − Cj x̂

i
k|k−1), (4)

where Eq. (3) is the local predictor representing fusion in the
predictor-space and Eq. (4) represents fusion in observation-space.
The corresponding variables are: W = {wij} is the fusion weight
matrix for predictor-space, such that wij ≥ 0 with

∑
j∈Di

wij = 1

(stochastic), and Ki
k is the local gain matrix at agent i and time k.

Let ei
k = xk − xi

k|k be the local estimation error at agent i and
time k and ek = [(e1

k)
T , . . . , (eN

k )T ]T be the network estimation
error. After some straightforward manipulations (see [6]), we obtain
the following distributed error dynamics:

ek = (W ⊗A−KkDC(W ⊗A))ek−1 + qk, (5)

where qk = [(q1
k)

T , . . . , (qN
k )T ]T collects the remaining terms

which are weighted linear function of the system and output noise
independent of ek and,

Kk = blockdiag[K1
k , . . . ,K

N
k ], (6)

DC = blockdiag[
∑
j∈D1

CT
j Cj , . . . ,

∑
j∈DN

CT
j Cj ], (7)

Comparing Eq. (5) with Eq. (2), it is straightforward to see that the
distributed estimation error, ek, can be stabilized if and only if (W⊗
A,DC) is Therefore, the communication network,W , plays a major
role for error stability of the single time-scale distributed estimation.
Remarks:
(R1) Every block diagonal,

∑
j∈Di

CT
j Cj , in the matrixDC , can be

thought of as a representation of all the observations in the extended
neighborhood, Di, of agent i.
(R2) The diagonal entries of W are all nonzero, since every agent
is in its own extended neighborhood. Therefore, GW has a disjoint
union of self-cycles, and S-rank(W ) = N .
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Fig. 2. The graph associated with (I ⊗ A,DC). Agent yC has no
access to any state of the system. System is (A,C) observable but
not (A,Ci) observable for any agent.

3.1. Assumptions

In the rest of the paper, we make the following assumptions:
(i) The communication between the agents is stable, i.e., the com-
munication network is static;
(ii) The system is globally (A,C)-observable;
(iii) For every agent, i, the pairs, (A,Ci) or (A,

∑
j∈Di

CT
j Cj), are

not necessarily observable.
Assumption (ii) is a typical assumption in distributed estimation im-
plying the observability of centralized estimator; without this, no es-
timation scheme will work. Assumption (iii), in practice, makes the
distributed estimation problem more challenging and is where this
work becomes significantly different from many current approaches.

3.2. Problem formulation

We now characterize the distributed observability of the estima-
tor in Eqs. (3)-(4), i.e., the observability of (W ⊗ A,DC). We
refer to (W ⊗ A,DC) as the distributed system, and GW⊗A as
its associated digraph. Consider W = I and DC = DC where
DC = blockdiag[CT

1 C1, . . . , C
T
NCN ]; this implies no informa-

tion exchange among the agents, where the distributed system,
(I ⊗ A,DC), consists of N subsystems associated with each agent
(for example, see Fig. 2). With no information fusion, each agent
has only partial observation of the system, and has to obtain the
missing information from its immediate neighborhood over time.
In system digraph this information sharing provides more linking
among the subsystems. This extra linking, captured by the non-zeros
in W and the summation in DC , has the potential to improve the
generic observability of the system.

In this regard, the distributed observability can be recovered via
either W ⊗ A matrix (i.e. fusion in predictor-space) or DC (i.e.
fusion in observation-space). In observation-space, a link between
two agents, for example from j to i (j → i), implies that agent i has
only access to agent j’s measurement. Mathematically, for this case,
the distributed system is defined as (I⊗A,DC). On the other hand,
for fusion in predictor-space, the distributed system is (W⊗A,DC).
In this more challenging case, adding a link from j to i, reflects as
edges from some states in the subsystem of agent j to some states in
the subsystem of agent i. This is more discussed in Section 4.

3.3. Agent classification

To describe our approach, we provide a novel agent classification.
Since the system is (A,C)-observable (and we assume that an A,C
pair is given), condition (i) in Theorem 1 enlists a disjoint union

of cycles and Y -topped paths, in the system graph, GA, that cov-
ers all the state vertices. Among possible choices of we find the
maximal set, L with the largest number of vertices contained in
its cycles/paths. For example, consider the graph in Fig. 1(b) with
three agents: yA observing output from x2, yB observing output
from x5, and yC with no observation. Two options for the maxi-
mal set, L, are: L1 = {(x1, x6), (x4, x5), (x3, x2, yA)} and L2 =
{(x1, x6), (x4, x5, yB), (x3, x2, yA)}, among others. We perform
the following agent classification with respect to parent/child SCC
classification and maximal set, L:

Definition 2. Type-α agent is the one that appears in the Y -topped
paths in L. For example, agent yA in Fig. 2. Type-β agent is the one
that measures a state in a full S-rank parent SCC in L. For example,
agent yB in Fig. 2. Type-γ agent is the one that is not Type-α or
Type-β. For example, agent yC in Fig. 2.

Noting that {x4, x5} is a full S-rank parent SCC, we get {yA, yB , yC}
as Type-{α, α, γ} agents for L1, and Type-{α, β, γ} agents for L2.
We now define crucial agents in the sense that removing them ren-
ders the system unobservable. This is different from crucial agents
for global observability [16]; this is because we further subdivide
crucial agents into two categories.

Lemma 3. The following are crucial for observability: (i) Every
Type-α agent; and (ii) At least one Type-β agent observing a state
in every full S-rank parent SCC, K, in GA.

As a sketch of the proof, note that removing a Type-α agent
violates condition (i), while having a parent SCC, K, with no Type-
β agent violates condition (ii) in Theorem 1 (see [7] for details.).
For example, in Fig. 2, both agent yA and agent yB are crucial for
observability.

4. RECOVERING DISTRIBUTED OBSERVABILITY

In this section, we present main results on the role of fusion in
predictor-space and in observation-space for (W ⊗ A,DC) observ-
ability of S-rank deficient system. The proofs are mainly graph the-
oretic that is a direct consequence of our generic approach. In the
following, Lemma 4 follows from Theorem1 while Theorem 2 pro-
vides the main result on fusion in predictor-space. Due to space
limitation, we omit the proofs of the lemmas and theorems in this
section and refer the interested readers to [23].

Lemma 4. The matrix W ⊗A is S-rank deficient, if and only if the
matrix An×n is S-rank deficient.

Proof. The proof directly follows from the definition S-rank(W ⊗
A) = max(rank(W⊗A)) = N×n. See detailed proof in [23]

Theorem 2. If system, A, is S-rank deficient, then (W ⊗A,DC) is
not observable for any choice of the matrix W .

Proof. The detailed proof is given in [23].

The above theorem shows that for S-rank-deficient systems,
fusion in predictor-space does not guarantee distributed observ-
ability. Thus, to recover observability, agents need more outputs
that implies fusion in observation-space. For fusion in observation-
space, the structure of the matrix DC has to be determined such
that (I ⊗ A,DC) is observable. Note that the ith n × n diagonal
block ofDC contains all outputs in the extended neighbourhoodDi.
In G(I⊗A,DC), this means direct access to outputs in Di. This
follows to our main result on fusion in observation-space.
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Theorem 3. Having the assumptions (i)-(iii) in Section 3.1, the sys-
tem (I ⊗ A,DC) is observable if and only if in the communication
network GW :
(i) Every Type-α agent, i, is directly linked to every other agent j;
(ii) For every full S-rank parent SCC, K, every agent, j, without a
state observation in K is directly linked to a Type-β agent, i, with a
state observation in K.

Proof. The proof is a direct result of Lemma 3 (see [23]).

Finally, consolidating this with Theorem 2, we directly get the
main theorem on generic observability of S-rank-deficient systems.

Theorem 4. Let the assumptions (i)-(iii) in Section 3.1 hold. For
(W⊗A,DC) observability with minimal sufficient communications,
each agent needs:
(i) A direct link from all the Type-α agents;
(ii) A directed path to (at least) one Type-β agent for every full S-
rank parent SCC of A. This means, if there are two or more outputs
from the same SCC, a directed path to any one of them is sufficient.

Remarks:
(R3) Notice that, every agent requires a directed path to each Type-β
agent while a direct link from each Type-α agent. Therefore, roughly
speaking, Type-β agents requires less number of links compared to
Type-α agents.
(R4) The generic observability of (W⊗A,DC) implies existence of
a full gain matrix, K, such that ρ(W ⊗ A−KkDC(W ⊗A)) < 1.
Here, however, the gain matrix, Kk, is needed to be block-diagonal
with N blocks of n × n matrices. To find such matrix, we use the
iterative procedure based on LMI approach proposed in [6]. Further,
it is assumed that the matrix Kk is independent of time, k. We omit
the details here and refer interested readers to [6, 23].

5. EXAMPLE AND SIMULATION

For simulation, reconsider the system structure in Fig. 1(b). The
structure of the matrices A and C are as follows:

A =


0 × 0 0 0 ×
0 × × 0 0 0
0 0 0 0 0 0
0 0 0 0 × 0
0 0 × × 0 0
× 0 0 0 × 0

 , (8)

C =

 yA
yB
yC

 =

 0 × 0 0 0 0
0 0 0 0 × 0
0 0 0 0 0 0

 . (9)

Based on Theorem 4, we propose communication matrices W1

and W2, respectively, for maximal sets L1 and L2 (given in sec-
tion 3.3):

W1 =

 × × 0

× × 0

× × ×

 , W2 =

 × 0 0

× × ×
× 0 ×

 . (10)

The associated networks GW1 and GW2 are shown in Fig. 3.
Notice that GW1 has more communication links as compared with
GW2 (see Remark (R3)).

We consider random numbers for non-zeros in, A, W 1, and
C. We have ρ(A) = 1.3782, which implies that system is unsta-
ble. We determine the block-diagonal gain matrix, K, as in Re-
mark (R4). The system and output noise are considered to be vk ∼

1Notice that the matrix W has to be stochastic.

Fig. 3. Two possible communication networks: GW1 on the left and
GW2 at on the right;
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Fig. 4. The performance of the DKE under the network GW2 com-
pared to Centralized Kalman Filter. The MSEE error is normalized.

N(0, 0.052In×n) and rik ∼ N(0, 0.22), respectively. In Fig. 5,
we compare system error evolution for agents with the Centralized
Kalman Filter. We choose all the non-zero parameters randomly and
repeat the simulation for 1000 Monte-Carlo trials while recording
the sum of squared errors over the n = 6 states (for each agent)
in each trial. the error is averaged over the Monte-Carlo iterations
and then normalized. Clearly, despite the fact that system is unsta-
ble, the estimation error at all agents is bounded, even for agent yC
with no system observation. Notice that the performance in terms of
estimation error differs for agents.

Although the results here illustrated with a simple academic ex-
ample, the algorithms are scalable and practically feasible for any
large-scale system. The determination of maximal set L can be done
via combinatorial algorithms to find the maximal matching in asso-
ciated bipartite graph of the system; e.g. Hopcraft-Karp algorithm
with running time ofO(n2.5) [24]. Also, the parent/child SCC clas-
sification can be performed using DFS algorithm in O(n2) [25].
Therefore, the computation effort of is clearly polynomial.

6. CONCLUSION

In this paper, we study the distributed estimator in Eqs. (3)-(4) for S-
rank deficient systems; we show that fusion in predictor-space does
not result in an observable estimator, and one has to rely on fusion in
observation-space. Further, using a generic approach, our results are
independent of any particular fusion rule chosen (e.g., Metropolis-
Hastings [26]). It is noteworthy that the employed algorithms for
agent classification do not have exponential complexity, and thus,
the proposed strategies are computationally efficient for large-scale
systems.
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