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ABSTRACT

In the decentralized consensus optimization problem, a net-
work of agents minimizes the summation of their local ob-
jective functions on a common set of variables, allowing only
information exchange among neighbors. The alternating di-
rection method of multipliers (ADMM) has been shown to be
a powerful tool for solving the problem with empirically fast
convergence. This paper establishes the linear convergence
rate of the ADMM in decentralized consensus optimization.
The theoretical convergence rate is a function of the network
topology, properties of the local objective functions, and the
algorithm parameter. This result not only gives a performance
guarantee for the ADMM but also provides a guideline to ac-
celerate its convergence rate for the decentralized consensus
optimization problems.

Index Terms— Network consensus optimization, alter-
nating direction method of multipliers, linear convergence

1. INTRODUCTION

Recent advances in signal processing and decision-making
of large-scale networked multi-agent systems have motivated
much research interest in decentralized optimization [1, 2].
Considering scalability and robustness issues, centralized op-
timization is no longer a proper choice and we prefer letting
the agents accomplish their task in a decentralized manner.
In decentralized optimization, no fusion center collects data
and executes computation; contrarily, each agent holds its
own data, computes by itself, and exchange information with
its neighbors to collaboratively minimize an overall objective
function. Typical applications include networked control sys-
tems [2], wireless sensor networks [3], and smart grids [4].

In this paper, we focus on decentralized consensus op-
timization, an important class of decentralized optimization.
This problem considers a network of L agents which cooper-
atively minimize a separable objective function

L
min 37 fi(Z), (1
=1
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where f;(%) : RN — R is the local objective function known
by agent ¢ only, and all the agents have a common optimiza-
tion variable #. This formulation arises in averaging [5], esti-
mation [3, 4, 6, 7], and machine learning [8]. The form of
fi(Z) can be least squares [5, 6], regularized least squares
[3, 7], or more general ones [8]. Among various decentralized
approaches for solving (1), the alternating direction method
of multipliers (ADMM) [9] demonstrates fast convergence in
many applications, e.g., [3, 6, 7]. However, how fast it con-
verges and what factors affect the speed are both unknown.
This paper addresses these issues theoretically.

1.1. Our Contributions

The contributions of this paper are twofold. First, we estab-
lish the linear convergence rate of the ADMM in decentral-
ized consensus optimization when each local objective func-
tion is strongly convex. This result gives a performance guar-
antee for the ADMM and validates the observation from prior
literature. Second, the theoretical convergence rate is a func-
tion of the network topology, properties of the local objective
functions, and the algorithm parameter. Thus, it provides a
guideline of adjusting the network topology, constructing the
optimization problem, and tuning the algorithm parameter to
accelerate its convergence.

1.2. Related Work

Besides the ADMM, existing methods for (1) include be-
lief propagation [8], incremental optimization [10], and dis-
tributed subgradient descent [11]. Belief propagation and
incremental optimization require to predefine a tree or loop
structure in the network, while the advantage of the ADMM
and distributed subgradient descent is that they do not rely
on any predefined structures. Distributed subgradient descent
fits for asynchronous networks, but suffers from slow con-
vergence. The descent rate of objective value is typically
O(log(k)/k) where k is the number of iterations [12]. The
ADMM generally needs synchronous steps taken by all the
agents, but has much faster empirical convergence.

Existing convergence rate analysis of the ADMM is re-
stricted to the classic, centralized computation. Generally,
when the objective function is strongly convex, the constraints
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are linear and non-redundant, the ADMM guarantees linear
convergence. However, that is not the case for decentralized
consensus optimization, as we will see in Section 2. In [13]
an ADMM with restricted stepsizes is proposed and proved to
be linearly convergent for certain types of non-strongly con-
vex objective functions. A recent paper [14] shows linear con-
vergence with a strong convexity assumption, and our paper
extends the analysis tools therein to the decentralized regime.

A notable work of convergence rate analysis is [15] which
proves linear convergence of the ADMM when (1) is an aver-
age consensus problem. That is, each local objective function
is a simple least squares (for agent i, fi(Z) = ||# — vi||3
where y; is the measurement of agent 7). Since [15] treats the
ADMM from the state transition equation perspective, when
f(Z) has a more general form, the matrix spectral analysis on
the state transition equation is no longer viable.

2. DECENTRALIZED CONSENSUS OPTIMIZATION

Throughout the paper, we make the following assumptions on
the network topology and the local objective functions:

Assumption 1. The network of L agents is bidirectionally
connected with F/ edges (and hence 2F directional arcs). We
describe it as a symmetric directed graph G4 = {V, A} or an
undirected graph G,, = {V, £}, where V is the set of vertexes
with |V| = L, A s the set of arcs with |A| = 2F, and £ is the
set of edges with |£| = E.

Assumption 2. Local objective functions are differentiable
and strongly convex. For agent i, (V f;(Z,) — V fi(Zp), T —
Fp) > my,||Zo — |3 for any F4, 7, € RY withmy, > 0.

Assumption 3. Gradients of local objective functions are
Lipschitz continuous. For agent i, ||V fi(Z,) — V fi(Zp)||2 <
My, ||Eq — %2 for any Z,, &, € RN with My, > 0.

To apply the ADMM in solving (1), we reformulate it as

L
min i\Ti),

glf( ) 2)
s.t. T = Zi5,T5 = Zl],V(Z,]) € A

Here x; is the local copy of Z at agent ¢ and z;; is an auxil-
iary variable imposing the consensus constraint on two neigh-
boring agents ¢ and j. The optimization variables in (2) are
x;’s and z;;’s. Defining x € REN as a vector concatenating
all z;’s, 2 € R*EN as a vector concatenating all z;;’s, and

f(z) = Zle fi(x;), (2) can be written as a matrix form

min  f(z),
s.t. Ax+ Bz =0. &)

Here A = [AT, AT|T; Ay, Ay € RPENXLN are both com-
posed of 2E x L blocks of N x N matrices. If (7, j) € A and
2;; is the pth block of z, then the (p, ¢)th block of A; and the
(p, j)thblock of Ay are N x N identity matrix [ ; otherwise
the corresponding blocks are N x N zero matrix Ox. And
B = [_IQEN,_IZEN]T with IZEN being a2EN x 2EN
identity matrix.

Under Assumptions 1-3, we have the following lemma.

Lemma 1. Under Assumption 1, (3) is equivalent to (1);
under Assumption 2, f(z) is strongly convex, (V f(z,) —
V (), Ta — xp) > my||ve — 3|3 for any z,, 2, € REN
with my = min; my,; under Assumption 3, gradient of f(x)
is Lipschitz continuous, ||V f(z,) — V f(zp)||2 < My||ze —
xp||2 for any x,, 2, € RYN with My = max; My,.

The augmented Lagrangian function of (3) is

Le(w,2,0) = f(2) + (\ Az + B2) + 5| Az + Bz| 3,

where A € R*FN is the Lagrange multiplier and c is a pos-
itive penalty factor. At iteration k£ + 1, the ADMM firstly
minimizes L.(z, 2%, A\F) to get zF!, secondly minimizes
Lo(zF+1, 2, AF) to get z#+1, and finally updates \*+! from
21 and z**1. The algorithm is outlined as

z: V() + ATA 4 cAT(Azk+! + B2F) =0,
Z: BTN 4 eBT (Ax*+! + B2k =0, (@)
b NeHL _\F _ c(Azk ! 4 B2kt =0,

which can be significantly simplified (to (7) below). First, (4)
can be alternatively expressed as

Vf(akt) + ATAHL 4 cATB(2F — 241 =0,
BTAH 2, 5)
ML AR c(Azk Tt + B2FH) = 0.

Letting AT = [BT,~T]T where 3,7 € R?*FN, we know
Br+1 = —4k+1 from the second equation of (5). If choosing
B° = —+° such that BT A = 0 and choosing 2° = £MT2?,
the updates in (5) is equivalent to

Vf(xk'H) -I-M_ﬁk""l _ cM_,.(zk _ zk+1) =0,
P gk garTekn Zo, ©
sMix® — 2" =0.

Here My = AT + AT and M_ = AT — AT. We often choose
Y in the column space of ML (e.g., f° = 0), such that g*+1
also lies in the column space of MT; the reason will be given
in Section 3.

If further letting W € REN*EN with its (4,4)th block
being the degree of agent ¢ multiplying Iy and other blocks
being Oy, a = M_B3, Ly = My M, and L_ = I M_MT
[7], we can get a simple decentralized algorithm

z: Vf(@F) +af +2eWabtl —cL 2k =0,
a: okt —ak —cL_gktl = .

)

In practice, we use the simpler updates (7); for the analysis
purpose, this paper considers the equivalent form (6).
Remark 1. The newly introduced matrices M, M_, L,
and L_ are determined by network topology. Note that L, =
MM is an extended signless Laplacian matrix of G,
and L = 1M_MT" is an extended Laplacian matrix of
G; by extended we mean replacing 1’s by In’s, —1’s by
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—IN’s, and 0’s by On’s [16, 17]. Denote omax(My) and
Fmin(M_) as the largest singular value of M and the small-
est nonzero singular value of M_, respectively; omax (My) =
v/ Omax(2L) and Gin (M_) = \/Gmin(2L_) are both mea-
sures of connectedness. Larger omax (M) and Gpin (M)
mean better network connectivity.

Remark 2. Convergence of (4) to the global optimal solu-
tion of (3) can be established from the convergence property
of the ADMM [9]. However, deriving its rate of convergence
in our setting is nontrivial. In (3), the objective function f(x)
is strongly convex with respect to x, but not strongly convex
with respect to x and z. Further, the linear constraints are
always redundant when the network is connected.

3. CONVERGENCE RATE ANALYSIS

Taking k — +o0 in (6) yields the KKT condition of (3)

Vi(@*)+M_p* =0,
MTx* =0, (®)
1MI:13 —2* =0,

Where (z*, 2*) is the unique primal optimal solution (unique-
ness comes from the strong convexity of f(z)) and \* =
[8*T, —B*T]T is one of the dual optimal solutions of (3).

Let us introduce
z chpn  O2EN
u = ,G = .
< B ) ( O26n N >
The following lemma shows Q-linear convergence of the se-
quence {||[u* — u*||¢ = /(u¥ —u*)TG(uF —u*)} 10 0.
Theorem 1. For any u > 1, there exists a positive number

— min 4 B=Dan (M) s
6_m1n{ o ) ’—max(M+)+“fM2"_2(M—)} )

min

such that

1+ 0)Juf = (g < [Juf — u[[Z,. (10)

The primal sequence {z*} is R-linear convergent to 2* with
(1D

Proof. Subtracting the three equations in (8) from the cor-
responding equations in (6) yields

mglla* = a3 < [Juf — w3

VM) = Vf(a*) = eMy (28 — 2 — M_ (B - %),
(12)
%Mz(xk-i-l _ :U*) — ﬂk-ﬁ-l _ ﬂk, (13)
SMT(zh T — %) = 2+ — 27, (14)
respectively. Therefore, we can bound ||z*+1 — z*||3 with
my|lz*+t — 2|3
< (@M =2 V(M) - V()
= (gl eM (5 S M) - M (gE - )
— (:Uk'H _ :U*,CM+(Zk _ Zk-i—l))
HabH g, M (g - )
— 26<Zk _ Zk+1,zk+1 _ z*) + %(51@ _ 5k+1,5k+1 _ B*)

2(uf —u
= [Juf —w|g — llu

k+1 )TG(uk-H _ u*)
k+1

FHIE
15)
where the inequality follows from the strong convexity of
f(x); the first equality follows from (12); the third equality
comes from (13) and (14).
Next we show

[ "

[luf = uP G 4 mg ||t — 273 2 ofluf T — w3

(16)
or equivalently
cllzF = 2MFHE + LI1BY = BRI 4+ mg| |2 — a|]3
> §(cllA = 2|3+ LB = ).
17
From the third equation of (14) we have
A |F
ML @ — )13 (18)

< Loz S0r @k o o)

On the other hand,

PO (M) |25 = 2¥[3 + (p = 1) ?lek“ - z*[3
> ||<3M+(Z’“rl D)3+ (n = DIV f(aFT) = V f(@)|]3
> (1= D||M_ (B4 — )13
2 (1__) mm( )”ﬂk-‘rl_ﬂ*”%a

(19)

where the first inequality follows from Lipschitz continuity of
V f(x); the second inequality follows from (12) and the basic
inequality ||a +b|I3 > (1 — m)llall3 + (1 = ;)I[bI[3, Ve > 0
the third inequality holds since we choose 3° in the column
space of MT such that S¥*1 and * also lie in the column
space of M T, as discussed in Section 2.

From (18) and (19), we know ¢ in (9) satisfies (17), and
equivalently, (16). Assumptions 1 and 2 guarantee that my >
0 and Gpmin(M_) > 0, such that § > 0. Combining (15) and
(16) further leads to (10).

Above we show that the sequence {[c2 2%, ¢~z gkT]|T}
is Q-linear convergent to {[c22*T, ¢~ 2 *T]T} with rate ~
(1 + &)~ =. Note that it does not mean Q-linear convergence
of either the primal sequence {z*} or dual sequence {3*}.
However, from (15) we know that (11) holds, i.e., the primal
sequence {z*} is R-linear convergent to *. O

4. TUNING OF CONVERGENCE RATE

This section discusses how the convergence rate is influenced
by the network topology, property of the local objective func-
tions, and algorithm parameter c.

In (9), the value of § is related with an arbitrary p > 1,
the algorithm parameter c, strongly convexity constant m ¢ of
f(z) and Lipschitz continuity constant M of V f(x), as well
as Omax (M) and Gmin (M_). For convenience, we define
the condition number of f(x) as ky = Am/[—; and the condition
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C"maX(M+) c"rn'ruc(L+)
Tmin(M_) Gmin(L_)"
Recall that larger min(L—) and omax (L) mean better con-
nectedness, but the latter is a weaker measure of network con-
nectivity [16, 17]. Roughly speaking, larger k¢ means worse
connectedness.

To maximize ¢, we choose ¢ in (9) as

number of G4 and G, as kg =

1
_ 212 My 20
€= U'max(M-I—)&min(M—) ( )

such that

e S (=162 (M) myEmin(M-)
0= mm{ 102 (M) #%Mfamax(MH} . -

The first and second terms in the minimum are monotonically
increasing and decreasing with respect to g when o > 1, re-
spectively. Hence we choose

2 2
1_ re _ ke [Eg
u_]'_'_?n? 2K n?+4<]‘

to maximize ¢ and obtain

_ 1 1 4 1
0=s5\r Tz a2 (22)

The value of 4 in (22) is monotonically decreasing with
respect to Ky > 1 and kg > 0, and its limit as k; — oc
or kg — oo is 0. This conclusion suggests that smaller
condition number k¢ of f(z) and smaller condition number
kg of the graph lead to faster convergence. Therefore, when
we choose ¢ as recommended in (20), a well-connected net-
work and well-conditioned local objective functions lead to
fast convergence in general.

5. SIMULATION RESULTS

In the simulation, we consider a network of L = 100 agents.
Agent ¢ measures the signal Zo from y; = ®;%o + e; where
%0,Yi,e; € R? and ®; € R2*2. Elements in &y, ®; ~
N(0,1) and elements in e; ~ N'(0,0.01). The local objec-
tive function held by agent i is f;(%) = ||ly; — ®;Z||3. We use
the same data throughout the simulation such that k is fixed.
This way, we can focus our discussion on the impact of ¢ and
kg on the convergence rate. Convergence of the algorithm is
measured by the squared residual ||z% — 2*||3. We let K be
the first iteration in which the squared residual first reaches a
tolerance of 10720,

The first two simulations use the recommended ¢ in (20)
as the algorithm parameter. First, given three different values
of kg, Fig. 1 depicts the linear convergence of the ADMM.

Second, we randomly generate 200 networks with differ-
ent values of k¢ and consider the influence of k¢ on the con-
vergence rate. Fig. 2 shows that when kg > 2, i.e., the
network connectivity is not strong, K is positively correlated
with k¢; that validates our theoretical analysis. However,

— K, = 2.0642
_10° - - % = 3.2922]]
m G
=)
——ie = 1.
3 K, = 1.6638
[0]
o
'U ~
o) -10 ~
2 407 ~
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k
Fig. 1. Iteration number k vs. squared residual.
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Fig. 2. Iteration number of convergence K vs. K.

when the network connectivity is strong (and thus the con-
vergence is fast), the theoretical analysis no longer holds.

Third, we compare the recommended ¢ in (20) and the
practically optimal ¢ for networks with different k¢, as shown
in Fig. 3. When the network connectivity is medium (kg ~
2), the recommended c is close to the optimal one. The rec-
ommended c is smaller than the optimal one when (kg < 2)
and larger when (kg > 2). Note that in deriving (9), we in-
troduce several inequalities. Therefore, the recommended ¢
in (20) is not giving the tightest bound. Improving the choice
of ¢ will be a future direction of our research.

1000 : ; ;
— = 2.0642 ; ;
1
800 - - -, = 3.2922 ; *'
..... K. = 1.6638 )
600 & g
X \ I'
400 "»‘ /!
200
0
107 107" 10°

Fig. 3. Iteration number of convergence K vs. ¢; solid circles
are using the recommended ¢ in (20).
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