
IMPLEMENTING ENERGY-EFFICIENT TRACKING IN A SENSOR NETWORK

Kyle A. Harris and Venugopal V. Veeravalli

University of Illinois at Urbana-Champaign
ECE Department and Coordinated Science Laboratory

1308 West Main Street
Urbana, Illinois, 61801-2307

ABSTRACT

An energy efficient sleep control algorithm is developed for
application to the tracking problem in a wireless sensor net-
work. This simple algorithm applies intuition gained by ex-
amining a more complicated dynamic programming solution
approximation. The algorithm is shown through simulation
analysis to exhibit improved efficiency beyond simple sen-
sor duty cycling, very nearly achieving the effectiveness of
the original dynamic programming solution. Additionally a
testbed is developed specifically to evaluate the feasibility of
implementation of the algorithm on a physical system. The
algorithm is shown to work on this testbed, successfully track-
ing a light source in the network.

Index Terms— Wireless Sensor Networks, Energy Effi-
ciency, Sleep Control, Tracking

1. INTRODUCTION

The development of small, cheap wireless sensor nodes over
recent years has allowed for the production of these sensors
in large quantities. Wireless sensor networks (WSNs) have
found uses in wildlife habitat monitoring [1], forest fire detec-
tion [2], and a number of other areas. Although these projects
have met some measure of success, there exist challenges to
the continued widescale deployment of WSNs in society. One
of these challenges is the efficient use of power within the
network. It is neither cheap nor easy to maintain an effec-
tive WSN, as the batteries need to be replaced on individual
nodes every so often. This can become especially problem-
atic for sensors deployed in harsh or hostile environments. A
significant benefit is gained by extending the battery life of
the sensors.

In this paper we approach the power efficiency problem
by using intelligent sleep algorithms to save power when the
sensors do not need to be active. Duty cycling the sensors

This work was supported by the National Science Foundation under
Grant NSF CCF 11-11342, and by the Air Force Office of Scientific Re-
search (AFOSR) under the Grant FA9550-10-1-0458, through the University
of Illinois at Urbana-Champaign

helps, but additional benefit can be gained through more in-
telligent control of the sleep times of the sensors. In [3] the
authors derived sleep control policies for a simple model and
network. This was extended to a more general case in [4].
The result of the work in [4] is used as a rough lower bound
for the performance of an implementation of a tracking WSN.
Our goal is to get a feasible, simple approximation to the more
general solution found in [4]. Additionally we implement this
approximation on a WSN testbed. With this testbed we get
some basic results regarding the feasibility of the deployment
of the algorithm developed. We find that our approximation
performs well, and that further testing in a variety of environ-
ments should be pursued for continued progress.

The remainder of this paper is organized as follows. In
Section 2 we give a short problem description for our track-
ing WSN. In Section 3 we briefly review the approximation
to the dynamic programming solution, as presented in [4]. In
section 4 we develop a simple way of obtaining a less opti-
mal solution that is far easier to implement than the solution
from Section 3. In Section 5 we present some simulation re-
sults comparing the two solutions. In Section 6 we discuss the
WSN testbed setup that we implemented for feasibility test-
ing, and then recount the observations made from the testbed.
In Section 7 we present some concluding remarks.

2. PROBLEM DESCRIPTION

In this paper we consider the problem posed in [4]. The basic
setup for the problem procedes as follows:

Consider a two dimensional space in which we aim to
track the movements of a single object over time. We partition
the space into m cells and use a finite alphabet B to describe
the set of possible locations the object can reside at any given
point in time. Within the space we have n sensors placed to
track the movements of our object of concern, where n ≤ m
and no two sensors are placed in the same cell.

We assume the object’s movement can be modeled by a
discrete time Markov chain whose states correspond to the
cells of our space. The current state is the cell in which the
object currently resides. There is an additional terminal state,

4608978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

T , which represents the case where the object leaves our net-
work space. If the object leaves our network space the test
immediately terminates, and no further tracking is done. We
see that |B| = m + 1. We assume that the movement of the
object is described by a (m+1)×(n+1) probability transition
matrix P in which each element Pij represents the probability
the object moves from cell i to cell j. We assume that if the
object enters the terminal state, it stays there forever. In other
words, PT T = 1 and PT j = 0,∀j ∈ B − T .

Each of our sensors can be in one of two sleep states dur-
ing each time step. The sensor can either be active and taking
a measurement, or asleep. We assume there is an energy cost
c for the sensor if it is taking a measurement, and that if it is
asleep the sensor does not take a measurement for that time
step. A sensor that is asleep for a number of time steps cannot
be awakened until the number of time steps have expired.

The current state of the network is denoted by b. Let p de-
note a probability distribution maintained by the central con-
troller that represents a prior for the belief state of the net-
work. Every time step there is an estimate b̂ of the network
state made based on both the measurements taken by the sen-
sors at that time step, and the vector p. A tracking cost for
the network is defined as the Euclidean distance between b̂,
and b. There is a tradeoff between the energy cost and the
tracking cost of the network that can be optimized through
the adjustment of the value c.

3. DYNAMIC PROGRAMMING SOLUTION

In [4] the authors present a QMDP optimal solution approxi-
mation based off of dynamic programming principles applied
to the contol problem of how to assign the sleep times to the
sensors. ThisQMDP solution is based on techniques developed
first in the artificial intelligence literature [5, 6]. The optimal
sleep policy u can be found by using policy iteration [7] to
solve the QMDP per-sensor Bellman equation:

J (l)(p) = min
u

(

u−1∑
j=0

∫
B−T

T∆(b, l)(pP j)(db)

+

∫
B−T

(c+ J (l)(δb))(pP
u+1)(db))

in which J (l)(p) is the cost-to-go at sensor l for a given prob-
ability distribution p. The

∫
B−T ()(db) notation means to in-

tegrate over the entire state space excepting the terminal state
T . T∆(b, l) is the expected increase in tracking cost that re-
sults from not turning on sensor l when the object is in state b.
The generation of the T∆ matrix uses an involved algorithm
whose details are outlined in [4]. The matrix T∆ is the key to
the solution proposed in [4]. Calculations for T∆ can easily
become cumbersome as the number of states in the network
becomes larger.

4. INTUITION BASED SOLUTION

Our proposal here is to abandon the notion of solving the Bell-
man equation in the interest of computational simplicity, and
use some other method to get a different suboptimal solution.

We can gain some intuition into the characteristics a
good solution should exhibit by examining the behavior of
the model in [4]. When plotting T ∆(b, l) for a fixed object
location b, we noticed that the values of sensor importance
are heavily correlated with the distance from the object. An
example of T ∆(b, l) with b fixed can be seen in Fig. 1. In this
example the sensors in the network are arranged in an 11x11
rectangular grid.

0

5

10 0

5

10

0

0.05

0.1

0.15

0.2

0.25

Y
X

V
a

lu
e

Fig. 1. T ∆(b, l) for a fixed b

Our movement model assumes the object can move to any
adjacent state or remain where it is in a particular time in-
terval. Additionally, the sensor network and the state space
are laid out to preserve geometric symmetry. These assump-
tions allow for a symmetric movement model behavior, which
can be exploited in developing a suboptimal solution. All the
measurements of the sensors are assumed to be only corre-
lated to the distance from the object, and have no directional
component. Given our symmetric model and the non direc-
tional measurements we assume that the importance of a par-
ticular sensor to detection of b can be approximated well by
an expression that is a function only of dl, the distance from
the sensor l to the object.

The sensors that have the highest importance towards de-
tection should be the sensors that are awake at any particular
time k. Given that this value for sensor l is based only on dl,
as we are assuming, the sleeping patterns should be designed
such that the sensor comes awake as it becomes more likely
that the object is nearby. A given awake sensor l at time k
should then sleep for some function of E[τ(dl)], the expected
time it would take for the object to travel the distance dl.

We estimate E[τ(dl)] by first fixing the geometry of the

4609

state space and P for the network, and then estimating for
how long it takes for the object to travel distance dl through
Monte-Carlo simulation. After doing this for a number of
different values for dl, a function can be fit to the results map-
ping dl to E[τ(dl)]. This E[τ(dl)] can then be used to assign a
sleep time for any sensor l in the network, given b̂ an estimate
of the object location. We say that

uk,l = aE[τ(dl)]

where uk,l is the amount of time that sensor l should sleep
at time step k, and a is some constant. This allows for a to
act as a tradeoff parameter that indirectly controls how many
sensors are active during any given time step, similar to how
c functioned in the model presented in [4].

5. SIMULATION RESULTS

The network setup used for the simulations was a hexagonal
grid of cells for the state space, and a rectangular grid of sen-
sors arranged to fall exactly inside the centers of the cells.
This arrangement can be seen in Fig. 1.

The observation model used for these simulations as-
sumes that the observation intensity drops off at a rate pro-
portional to the inverse square of distance dl. This model
is valid for a number of physical applications (e.g. light
propagation, sound propagation). The simulation assumes
the object movement model follows a random walk behavior,
where there is a uniform probability the object moves to any
particular adjacent cell, or remains where it is.

Each point of the results presented in Fig. 2 is the average
value of 1000 simulations run for a particular c value. The
x axis is the average number of sensors awake per time step,
and the y axis is the average tracking error per time step. The
plot was generated by varying c over an average energy use-
age range of interest. We see the QMDP per sensor solution
from [4] presented alongside our approximation. The duty
cycling result was plotted to establish a baseline performance
to illustrate the benefit of using intelligent control with the
sensors.

Fig. 2 matches intuition well; we see that for a low num-
ber of sensors active per time step any method of tracking
is about equally effective, because all methods are almost
equally bad. This makes sense when you consider the random
walk movement model assumption, and directionless mea-
surements available from the sensors. Once the number of
sensors active per time step is raised enough to actually track
the object we see gains in tracking accuracy when using in-
telligent methods of sensor sleeping over duty cycling. Also
note that the approximation method proposed in this paper
performs nearly as well as the QMDP per sensor method from
[4]. This shows that much of the benefit that can be derived
through applying dynamic programming can also be achieved
through a far simpler algorithm, given some setup and model
behavior conditions.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

Sensor

State

Fig. 2. Network Setup

0 5 10 15
0

0.5

1

1.5

2

2.5

3

Avg. Energy Use

A
v
g

.
T

ra
c
k
in

g
 E

rr
o

r

Tracking Error Vs. Energy Use for Average Time Step

Approximation

Q
MDP

 solution [4]

Duty Cycling

Fig. 3. Simulation Tracking Results

6. TESTBED IMPLEMENTATION

Our testbed was designed for the ease of developing control
algorithms. We needed some wireless trancievers, preferably
with a well established standard already in place. We needed
only a few sensing capabilities as we were not developing
with any specific application in mind, but rather solving a
general tracking problem. We wanted to work with low power
microcontrollers. Finally, we desired simple serial input and
ouptut capabilities for the hardware, so that communication
with the central controller (a standard PC running Matlab)
would be simple.

For our object we decided to use a simple lamp a fixed
distance from the ground as a light source we could track in
the network. The network itself was laid out on the floor our
lab room in a square grid arranged to fit inside a non regular
hexagonal state space. We used one second time steps. We
again assume a random walk object movement model, just as

4610

in the simulations.

6.1. Hardware Selection

Our sensor nodes of choice were the TelosB motes, which are
based off of a design from UC Berkeley. These nodes use
the TI CC2240 1 mW tranciever chip for wireless communi-
cation, which is compatible with the IEEE 802.15.4 wireless
standard. The nodes have two Hamamatsu photodiodes with
different spectral responses for light sensing. The microchip
used is a TI MSP430f1611. The motes all have USB ports on
them for programming and serial communication.

6.2. Software Selection

We decided to run the Contiki OS on the sensor motes. Con-
tiki OS already has drivers and communication libraries writ-
ten specifically for use with the TelosB motes. It is designed
to be a lightweight OS that is power efficient, and specifically
for use with WSNs.

The central controller used in this WSN testbed was a
desktop PC running Matlab. One of the motes using spe-
cial code was plugged into the PC to give it 802.15.4 wireless
capabilities. This setup allowed for very rapid prototyping
of control algorithms. Offloading all the heavy computing to
premade Matlab libraries allowed us to focus on algorithm de-
velopment, rather than implementation of mathmatical func-
tions in C for an embedded system.

6.3. Testbed Results

The testbed implementation uses a network of 16 sensors ar-
ranged in a square grid pattern, which is fewer than the 25 sen-
sors we used in simulation. Also the testbed has the sensors
in a square grid, which means the state is made of slightly dis-
torted hexagons, not quite regular. We allowed our tracking
prior to assume the random walk model used in simulation.

The lab was hardly the ideal testing environment for the
network, but by placing the WSN on the floor in the middle
of the room, and turning off the ambient lights the network
managed to track the object accurately. Fig. 4 is a picture of
our testbed in action. The results for our testbed are presented
in Fig. 5 both for our approximation based control and the
basic duty cycling control. Each point in Fig. 5 is the result
of a single trial, rather than an average of samples.

7. CONCLUSION

In this paper we looked at the problem of using intelligent
sleeping methods to extend the battery life of the sensors used
in a WSN for tracking applications. We examined a solution
proposed based on dynamic programming principles, and de-
veloped our own simplified control method to approximate
this behavior. We simulated performance of the simplified
sleep control algorithm and then demonstrated its feasibilty
by implementing it on a WSN testbed.

Fig. 4. Wireless Sensor Network Testbed

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

Avg. Energy Use

A
v
g

.
T

ra
c
k
in

g
 E

rr
o

r

Tracking Error Vs. Energy Use for Average Time Step

Approximation

Duty Cycling

Fig. 5. Implementation Tracking Results

There are still issues to be addressed. In a full WSN im-
plementation for real world use there would likely be many
obstructions to the medium of interest (e.g. trees obsuring
line of sight, buildings reflecting radio waves) and this would
adversely affect our estimated object location. This in turn
would lower the quality of the sleep controllers decisions.

More complicated models should also be considered in fu-
ture work that factor in sensors which utilize directional sens-
ing such as PIR sensors, or ultrasonic or laser rangefinders.
These directional sensors would violate some core assump-
tions made in our simple algorithm, and should be handled
differently.

Finally, the network we used for testing was laid out sym-
metrically in a grid, but there is no reason this must be the
case. Some future work can investigate the application of our
algorithm to a network of asymmetrically placed sensors.

4611

8. REFERENCES

[1] J. Polastre, R. Szewczyk, A. Mainwaring, D. Culler, and
J. Anderson, “Analysis of wireless sensor networks for
habitat monitoring,” in Wireless Sensor Networks, pp.
399–423. Springer US, 2004.

[2] Y Li, Z. Wang, and Y. Song, “Wireless sensor network
design for wildfire monitoring,” in WCICA 2006. IEEE,
2006, vol. 1, pp. 109–113.

[3] J. Fuemmeler and V. Veeravalli, “Smart sleeping policies
for energy efficient tracking in sensor networks,” IEEE
Transactions on Signal Processing, vol. 56, no. 5, pp.
2091–2101, May 2008.

[4] J. Fuemmeler, G. Atia, and V. Veeravalli, “Sleep control
for tracking in sensor networks,” IEEE Transactions on
Signal Processing, vol. 59, no. 9, pp. 4354–4366, Sept.
2011.

[5] A. Cassandra, M. Littman, and N. Zhang, “Incremental
pruning: A simple, fast, exact algorithm for partially ob-
servable markov decision processes,” in Proc. 14th Ann.
Conf. Uncert. Artif. Intell., 1997, pp. 54–61.

[6] M. Littman, A. Cassandra, and L. Kaelbling, “Learning
policies for partially observable environments: Scaling
up,” in Proc. 12th Int. Conf. Mach. Learn., 1995, pp.
362–370.

[7] Dimitri P. Bertsekas, Dynamic Programming and Opti-
mal Control, Athena Scientific, 3rd edition, 2007.

4612

