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Abstract
We consider the problem of distributed detection in a large
network of sensors under network communication con-
straints. Sensor nodes are randomly deployed and follow
a random sleep/wake schedule. When awake, sensor nodes
perform local detection tests and communicate detections
over a multiple-access channel to a fusion center. The fu-
sion center can detect both successful communications and
communication collisions in the channel. We show that the
optimum fusion rule is a weighted sum of the number of
detections received and the number of collisions detected by
the fusion node. We derive analytical expressions that char-
acterize the performance of the system. Simulation examples
compare theoretical predictions with numerical results.

Index Terms— Distributed detection, random access sen-
sor network

1. INTRODUCTION

This paper considers the problem of distributed detection in
a large, random network of sensor nodes. We consider a lo-
calized event and focus on the case where sensor nodes com-
municate binary decisions over a single-hop wireless network
to a common fusion node. The fusion node combines the re-
ceived information in order to make a global decision on the
presence or absence of a signal source.

This work is related to and draws from recent works in
distributed detection. Niu et al. [1] show that, if local deci-
sions are communicated perfectly, the fusion rule for indepen-
dent and identically distributed (i.i.d.) binary observations,
conditioned on the true hypothesis, simplifies to counting the
number of detections. In [2], Niu et al. provide analytic and
approximate expressions for the counting rule in a large, ran-
dom sensor network and a random target location. Chang et
al. [3] incorporate a random access protocol for a fixed num-
ber of sensor nodes, and they derive a fusion rule that is a
weighted sum of the number of 1’s and 0’s successfully re-
ceived at the fusion node. Similarly, Kapnadak et al. incor-
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porate a random access protocol in [4], but for a random sen-
sor network. In [5], Aldalahmeh et al. develop a real-time
counting rule and provide an approximation to the system
performance assuming that collisions are negligible. Similar
to [2],[4], and [5], we consider a large, random sensor net-
work and incorporate a random access protocol. In contrast,
however, we assume a sensor node transmits only when it de-
clares a detection (i.e., when a node decides a signal source is
present). We show that the fusion rule is a weighted sum of
the number of received detection reports and the number of
message collisions.

The remainder of this paper is outlined as follows. In Sec-
tion 2, we outline the sensor network model, including the lo-
cal sensor operation, the network communication model, and
the fusion node processing. In Section 3, we present numer-
ical examples validating the analytic results and comparing
with previous results under perfect communications. Finally,
conclusions are given in Section 4.

2. SENSOR NETWORK MODEL

In this section we describe the sensor network model, in-
cluding the local sensor operation, the network communi-
cation model, and the fusion node processing. We assume
a large number of sensor nodes are randomly deployed in-
dependently and uniformly over a bounded, circular region.
Each node awakens with some probability at each time in-
terval, and if active, senses its environment, computes a local
decision, and communicates any detections to the fusion node
using a Slotted ALOHA protocol. When multiple nodes at-
tempt to communicate over a shared wireless communications
medium, transmitted messages are subject to errors due to col-
lisions with other ongoing message transmissions. Therefore,
the fusion node must take this into account when forming a
decision rule.

2.1. Sensor Node Model

To conserve energy, each sensor node follows a random
sleep/wake schedule according to a stationary Poisson pro-
cess, independent of all other nodes. The number of active
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nodes N during any period is modeled according to

Pr{N = n} = e−λ
λn

n!
, n = 0, 1, 2, . . . (1)

where λ is the average number of active nodes in the circular
region encompassing the sensor network.

Each active sensor node senses its environment and makes
a local detection decision. Sensors collect noisy measure-
ments of the environment for the purpose of detecting whether
or not a source signal is present in the scene. Under hypothe-
sis h0, when no signal is present, sensors measure only noise.
We assume the observations are independent and identically
distributed (i.i.d.) given h0 is the true state of nature. Un-
der hypothesis h1, in which a source is present, the sensor
measures a signal component embedded in noise. The obser-
vations are modeled according to

hj : fZi|H,D(z|hj , di), (2)

for j = 0, 1 and i = 1, 2, . . . , N , where di = ||xi−xs|| is the
Euclidean distance between the signal source at xs and the ith

sensor at xi. Under h0, there is no dependence on the source
signal, so we can write fZi|H,D(z|h0, di) = fZ|H(z|h0). As
a matter of notation, random variables are denoted with upper
case letters and lower case letters represent specific outcomes.

We assume a homogeneous medium that attenuates the
source signal with distance in a manner that does not depend
on the orientation relative to the signal source. For any given
location of the signal source, the distances between the sig-
nal source and the sensors, denoted by Di, are i.i.d. Thus,
fD1,...,DN (d1, . . . , dN ) =

∏N
i=1 fD(di). It follows that the

sensor observations are i.i.d. under h1, and the joint distribu-
tion of the observations is

fZ1,...,ZN |H(z1, . . . , zN |h1) =

N∏
i=1

ED(fZi|H,D(zi|h1, d))

=

N∏
i=1

fZ|H(zi|h1), (3)

where ED(·) represents the expectation with respect to the
distance D between the signal source and a sensor. For the
current problem, it was reported in [6] that the local tests in a
parallel decision fusion system are likelihood ratio tests pro-
vided the local observations are independent, conditioned on
each hypothesis. Accordingly, the test at the ith sensor decides
between H = h0 and H = h1 according to

Λi(Zi)
h1

R
h0

τi, (4)

where τi is the threshold and Λi(z) = fZ|H(z|h1)/fZ|H(z|h0)
is the likelihood ratio at the ith sensor. Although the likeli-
hood ratio function is identical at each sensor (i.e., Λi = Λ),
the local thresholds τi are not necessarily identical in optimal
fusion of binary decisions [6]. However, we assume each sen-
sor shares a common threshold τ . This choice dramatically
simplifies the design and deployment of the sensor network,
and it was shown in [7] to be asymptotically optimal.

Sensing Period t+1 Comms Period t+1Sensing Period t Comms Period t

1 2 M 1 2 M

Fig. 1. Sensing and communications periods for all active
sensor nodes.

The sensor-level performance is characterized by the
probabilities of detection and false alarm. These probabilities
are given by

p̄i,j = Pr{Λ(Z) > τ |hj} ≡ p̄j , (5)

for j = 0, 1 and i = 1, . . . , N , with p̄i,0 representing the
probability of false alarm and p̄i,1 representing the probability
of detection for the ith sensor. Alternatively, p̄i,1 represents
the average probability of detection at a sensor node, over all
possible locations of the sensor node (hence the overbar).

Local decisions, denoted by ĥi ∈ {h0, h1}, are commu-
nicated to the fusion node. The fusion node then combines
received information to make a global decision as to the pres-
ence or absence of a signal source.

2.2. Network Communication and Fusion

Sensor nodes are either awake or asleep during an activity
period, which is formed by a sensing period followed by a
communicating period. The sensing and communicating pe-
riods are synchronized so that each active sensor node ob-
serves the environment and makes a local decision during the
sensing period. Then, nodes attempt to transmit their deci-
sions to a common fusion node during the communications
period. Fig. 1 graphically depicts the sensing and commu-
nicating periods. Note that there could be overlap between a
communications period and the next sensing period, assum-
ing one does not interfere with the other and so that similar
periods do not overlap (e.g., Sensing Period t does not over-
lap with Sensing Period t + 1). Since we model the system
as being time-invariant, we need only model a single activity
period.

Since the sensor observations are i.i.d. given the true hy-
pothesis, it is straightforward to show that the number of sen-
sor nodes with detections, denoted by X , has a probability
mass function given by

Pr{X = n|hj} = e−λj
λnj
n!
, n = 0, 1, 2, . . . (6)

where λj = λp̄j . In [1], Niu et al. show that, if the local
detections are communicated perfectly, the fusion rule sim-
plifies to counting the number of detections. In this paper, we
derive the fusion rule for the case of sensors communicating
through a delay-constrained media access control (MAC).

To both save transmission energy and reduce communi-
cation collisions, sensor nodes only transmit detections (i.e.,
when ĥi = h1). Furthermore, the detection messages do not
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need to be unique to the sensor nodes. In [4, 5], similar dis-
tributed detection models were considered, but both 0 and 1
local decisions are communicated to the fusion node. Here,
messages to be transmitted represent only ĥi = h1 decisions.
In addition, we assume sensor nodes do not retransmit mes-
sages in the event of a collision, again to conserve energy.
Since detection messages are identical in this work, collisions
provide valuable information at the fusion node.

During the communication period, each sensor with a de-
tection attempts to communicate a single detection message
via Slotted ALOHA. The communications period is broken
into M < ∞ equal-duration slots. On the receiving side, the
fusion node does not know which slots will be utilized, so it
must wait the duration of all M slots during the communica-
tions period before making a decision. Thus, the communica-
tions delay is directly proportional to M .

Nodes with detections randomly choose one out of M
slots, independent of all other nodes, according to the same
probability distribution. Let Si represent the slot number cho-
sen by the ith node. The slot numbers are then drawn accord-
ing to Pr{Si = m} = pm, for m = 1, 2, . . . ,M .

We assume the fusion node can detect collisions in any of
the M slots. A message is considered to be received success-
fully in a slot if only one sensor node transmits in that slot.
Otherwise, a slot is either unused or contains collisions. A slot
with 2 or more transmissions is counted as 1 collision. The
observations at the fusion node at the end of a communica-
tions period are then the total number of slots with detections,
denoted N1, and the total number of slots with collisions, de-
noted Nc.

We start by characterizing the probability mass function
of the number of nodes attempting a transmission in each slot.
Let Tm represent the number of sensor nodes that select slot
m for transmitting a detection message. Since the slot num-
bers are selected i.i.d. across the nodes with detections, the
probability of occupancy in slot m, conditioned on n nodes
(with detections) and hypothesis hj , is given by

Pr{Tm = k|X = n, hj} =

(
n

k

)
pkm(1− pm)n−k, (7)

for k = 0, 1, . . . , n. Under this network model, the sys-
tem designer can select the distribution from which nodes
choose slot numbers. For a discrete uniform distribution (i.e.,
pm = 1/M for m = 1, 2, . . . ,M ), the slot occupancies be-
come identically distributed across slots. It is clear that the
slot occupancies are also independent conditioned on the true
hypothesis due to the conditional independence of the local
decisions. Subsequently, the probability of occupancy in slot
m, given hj , is then

Pr{Tm = k|hj} = e−
λp̄j
M

(
λp̄j
M

)k
k!

, (8)

for k = 0, 1, 2, . . . and m = 1, 2, . . . ,M . Let π0,j =
Pr{Tm = 0|hj}, π1,j = Pr{Tm = 1|hj}, and π2,j =
Pr{Tm > 1|hj} denote the conditional probabilities of an

unused slot, a successful transmission in a slot, and a colli-
sion in a slot, respectively. Note that π2,j = 1 − π0,j − π1,j .
Finally, for k successful transmissions and l collisions out of
M slots, the joint conditional distribution of transmissions
and collisions is given by

Pr{N1 = k,Nc = l|hj} =

M !

k!l!(M − k − l)!
(π0,j)

M−k−l(π1,j)
k(π2,j)

l, (9)

for k = 0, 1, . . . ,M and l = 0, 1, . . . ,M − k. The decision
rule at the fusion node is then formed by the likelihood ratio
test

Pr{N1, Nc|h1}
Pr{N1, Nc|h0}

h1

R
h0

η. (10)

Substituting the right-hand-side of (9) into (10), and after
some simplification, an equivalent test is given by

N1 + βNc
h1

R
h0

η′, (11)

where

β =
log (eµ1 − 1− µ1)− log (eµ0 − 1− µ0)

log(µ1)− log(µ0)
, (12)

and µ1 = λp̄1

M and µ0 = λp̄0

M .
Let Y = N1 + βNc and define the set Γ = {(k, l)|l ∈

{0, 1, . . . ,M − k}, k ∈ {0, 1, . . . ,M}}. Note that Y is a
discrete random variable. Therefore, the test in (11) is a ran-
domized test. Then, at the fusion node, the probability of false
alarm is
Pfa =

∑
(k,l)∈Γ
k+βl>η′

Pr{N1 = k,Nc = l|h0}

+ γ
∑

(k,l)∈Γ
k+βl=η′

Pr{N1 = k,Nc = l|h0}, (13)

and, similarly, the probability of missed detection is

Pm =
∑

(k,l)∈Γ
k+βl≤η′

Pr{N1 = k,Nc = l|h1}

− γ
∑

(k,l)∈Γ
k+βl=η′

Pr{N1 = k,Nc = l|h1}, (14)

where γ is the randomization parameter of the fusion rule. For
a given λ, p̄0 (and thus τ ), and M , the probabaility masses in
(9) under both hypothesis (and thus β) are known. Since Γ
is a finite point set, it is straightforward to find η′ and γ that
satisfies Pfa = α, for some α ∈ (0, 1).

3. NUMERICAL RESULTS

In this section, we explore three simulation examples to
highlight the detector performance at the fusion node. In
the first example, the analytical performance is validated
against Monte Carlo samples of the test statistic. For the sec-
ond example, the analytical performance is evaluated versus
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Fig. 2. ROC curves for λ1 = 5 (blue),
7 (green), 9 (red) with λ0 = 0.5 and
M = 5. Solid lines represent the ana-
lytical ROC, circles represent sample es-
timates, and dashed lines represent the
ROC under perfect communications.
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Fig. 3. Pm versus M for λ1 = 10 (blue)
and 15 (green), with λ0 = 0.5 and fixed
Pfa = 10−5. Curves represent Pm for
the decision rule with collisions (solid)
and the counting rule under perfect com-
munications (dashed).
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Fig. 4. Pm versus λ for M = 5 (blue)
and 15 (green), with λ0 = 0.5 and fixed
Pfa = 10−5. Curves represent Pm for
the decision rule with collisions (solid)
and the counting rule under perfect com-
munications (dashed).

the number of communications slots M for fixed averaged
number of nodes λ. In the third example, the analytical per-
formance is evaluated versus λ for fixed M (i.e., a delay
constraint). In each example, the results are also compared
to the case for M → ∞, where the probability of a colli-
sion in a slot goes to zero. In which case, the fusion rule
is the counting (of detections) rule of [1] with probabilities
of miss detection and false alarm evaluated from (6) with an
appropriate randomization parameter.

First, we evaluate receiver operating characteristics (ROC)
curves (Pd versus Pfa) for three different conditional means
on the number of sensors nodes with detections. The mean
under h0 is fixed at λ0 = 0.5 and the number of slots is set to
M = 5. ROC curves are plotted in Fig. 2 for λ1 = 5 (blue
curves), 7 (green curves), 9 (red curves). For an appropriate
signal model, the average number of detections λ1 can be
increased for a fixed number of false alarms λ0 by increas-
ing the local threshold τ while increasing the density of the
sensor network [8]. As seen in Fig. 2, the performance is
comparable to the case without collisions, with a small gap in
performance. Collisions contain useful information since all
of the messages are identical. Subsequently, the fusion node
attempts to recover as much information from collisions as it
does from received detection messages.

We next evaluate the probability of missed detection ver-
sus the number of message slots M for a fixed false alarm
probability. The mean under h0 is again fixed at λ0 = 0.5 and
the (global) false alarm probability is set to Pfa = 10−5. Fig.
3 shows plots of Pm with the mean under h1 set to λ1 = 10
(blue curves) and 15 (green curves). It is clear from the figure
that the gap in performance can be diminished by increas-
ing the number of slots M . However, this is achieved at the
expense of delay at the fusion node to make a global deci-
sion. This behavior is also evident by examining the occu-

pancy probability in (8). AsM increases, the average number
of occupants in any given slot goes to zero. Thus, collisions
are reduced and the test statistic is dominated by the count of
detections.

Finally, we evaluate the probability of missed detection
versus the average number of active nodes λ for a fixed false
alarm probability. Again, the mean under h0 is fixed at λ0 =
0.5 and the (global) false alarm probability is set to Pfa =
10−5. Fig. 4 shows plots of Pm with the M = 5 (blue curve)
and 15 (green curve). Despite a fixed number of message
slots, this simulation shows that performance improves with
increasing average number of nodes, while the average num-
ber of detections under h0 (an thus transmission attempts) re-
mains constant. The average number of collisions increases
under h1 while remaining constant under h0, but the weight-
ing of collisions in the test statistic also increases.

4. CONCLUSION

We have derived the fusion rule for the case of binary sen-
sor nodes communicating through a random-access MAC on
a single-hop wireless network. There is a chance that some
detection messages are not received properly due to colli-
sions with other messages since the communications medium
is shared and randomly accessed. The fusion node receives
potentially a subset of the detection messages over M slots
and records the number of slots with any collisions. The fu-
sion node then combines this information to make a global
decision on the presence or absence of a signal source.

It was shown that the loss in performance is negligible,
despite collisions, relative to the case of “ideal” communica-
tions. Additionally, the gap in performance can be reduced by
increasing the number of slotsM , but at the expense of added
delay.
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