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ABSTRACT

We propose a distributed least-mean squares (LMS)
procedure based on a diffusion strategy for localization
and tracking of mobile terminals in cellular networks.
In the proposed algorithm, collaborating base stations
measure two sets of parameters, namely, the received
signal strength (RSS) and the signal propagation time
(SPT) to estimate mobile locations. The proposed al-
gorithm has a simple operational structure, offers agile
tracking performance and helps the network to save
energy and radio resources by benefiting from its de-
centralized and adaptive signal processing features.

Index Terms— distributed localization, mobile track-
ing, diffusion adaptation, wireless cellular networks.

1 Introduction

There are already several useful techniques for the local-
ization and tracking of moving objects over networks.
From the signal processing point of view, these tech-
niques are classified into centralized and decentralized
algorithms. The centralized approaches assume the
existence of a central processing unit (fusion center)
that is responsible for all the processing tasks. Exam-
ples of centralized approaches are the least squares
localization algorithms [1], maximum likelihood esti-
mators [2]; multidimensional scaling algorithms [3];
positioning with imprecise and noisy distance informa-
tion [4, 5]; and the other centralized techniques intro-
duced in [6–8]. There are also cooperative centralized
localization algorithms where the additional distance-
related data by assisting nodes (nodes with known loca-
tions) are sent to fusion center to enhance the accuracy
of the estimation [9–12]. For example, in cooperative
centralized localization in cellular networks, mobile
terminals with known locations can act as assisting
nodes and transmit additional RSS measurements to
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the fusion center to locate the remaining mobile users
more accurately [11].

Centralized algorithms perform well in small net-
work environments where the energy and communi-
cation bandwidth are not scarce resources. In large
size networks, the multi-hop message passing trans-
mission schemes used by centralized techniques may
create a communication bottleneck and incur high com-
munication cost. In addition, centralized localization
algorithms are unscalable, and susceptible to failure if
their only single-point central processor breaks down.
Therefore, distributed algorithms are more desirable in
large-size networks. There are currently several works
on distributed localization with each solution method
customized to address a specific problem in particular
network configurations and environment conditions.
Among these methods, we can mention distributed it-
erative gradient algorithms [13], minimum description
length algorithms [14], and particle filtering [15]. These
decentralized solutions are categorized as non-adaptive
and their tracking abilities tend to be limited.

In this paper, we propose a diffusion LMS algorithm
for mobile localization that utilizes a distributed mech-
anism to process the data, and uses a hybrid of RSS and
SPT measurements to increase the robustness and the
accuracy of the localization. The proposed algorithm
has a simple structure and requires low computational
resources. Therefore, it is an attractive solution for ap-
plications in networked systems where nodes have lim-
ited processing power and where the network radio re-
sources are scarce. More importantly, the algorithm op-
erates in an adaptive manner and has an agile tracking
ability which makes it particularly attractive in random
and time-varying environments.

Notation: We use boldface letters to represent ran-
dom variables, and normal font to represent determin-
istic quantities. For complex vectors and matrices, (·)∗

denotes complex conjugate transposition. IM denotes
the identity matrix of order M , and E[·] is the expecta-
tion operator.
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2 Problem Statement

We consider a wireless cellular network over a coverage
area that is divided into regular hexagonal cells, where
at the center of each cell there is a radio tower equipped
with three sectorized base stations. Each of these base
station (referred to as a node in this work) uses one di-
rectional antennas to serve users within a sector of 120
degrees in azimuth angle. The sectorized base stations
act as anchors with known locations and they measure
two sets of signal parameters, namely, the RSS and the
SPT to locate mobile terminals. The mobile terminals
use omnidirectional antennas so their transmit signals
propagate in all directions.

We use path loss data model to relate mobile loca-
tions with the received signal power, and presume that
the base stations and mobiles are synchronized such
that the SPT can be measured using a time of arrival
(TOA) mechanism with low error. The synchronization
assumption, however, can be relaxed if we employ a
time difference of arrival (TDOA) technique to measure
SPT [7].

Let gk(θ) denote the gain of directional antenna of
node k at angle θ. For a directional antenna with 3dB
beamwidth denoted by θ3dB , this gain can be well ap-
proximated by [16]:

gk(θ) = max
{

10 log
( 2π

θ3dB

)

− 12
(θ − θp
θ3dB

)2

, gmin

}

(1)

where −π ≤ θ ≤ π, θp is the pointing angle of the an-
tenna, and gmin is the minimum antenna gain. We use
pk(i) to denote the RSS of the mobile terminal in dB at
node k and time instant i. The RSS of the mobile is re-
lated to its distance from node k by the following path
loss model [17, page 82]:

pk(i) = Pt+gk
(

θu(i)
)

−10 log
(dk(i)

do

)α

+ lk(i)+n
(p)
k (i)

(2)
where Pt is the transmit power of the mobile and
gk
(

θu(i)
)

is the antenna gain in the direction of the
mobile terminal θu at time instant i, do is the antenna
far-field distance, and dk(i) is the distance between the
mobile and node k at time instant i. In the above expres-
sion, α is the path loss exponent, lk(i) is the loss caused
by obstructions between the mobile and the sectorized

base station due to non-line-of-sight (NLOS) and n
(p)
k (i)

is a zero mean Gaussian variable that represents the loss
caused by shadowing. The time varying Euclidean dis-
tance between node k and the mobile terminal is given
by dk(i) = ‖wo

i − sk‖, where sk is the known location of
node k in two dimensional space and wo

i is the location
of the mobile user at time instant i.

In addition to RSS measurements, each node records
the SPT, tk(i), which is the signal prorogation time from

the mobile to node k. If we denote the speed of light by
c, tk(i) can be expressed as [7]:

tk(i) =
dk(i)

c
+ bk(i) + n

(t)
k (i) (3)

where bk(i) is a random error with exponential distri-

bution caused by NLOS, and n
(t)
k (i) is zero mean mea-

surement noise. To model the mobile motion over time,
we consider the following nonlinear equation:

wo
i = w

o
i−1 + v

[

cos(φ(i)) sin(φ(i))
]T

∆T (4)

where v denotes the mobile speed, φ(i) represents the
mobile direction at time i and ∆T is the sampling time.
The mobility function (4) is, in fact, the Gauss–Markov
motion model with constant velocity [17]. The time-
varying mobile direction, φ(i), is random and changes
according to:

φ(i) = βφ(i− 1) + (1− β)φ̄+ 2π
√

1− β2 u(i) (5)

where φ̄ is the average direction angle and u(i) is a zero
mean random Gaussian variable with variance σ2

u.
In this paper, the objective is to develop a distributed

adaptive algorithm to estimate mobile trajectory wo
i for

i ∈ {0, 1, · · · }, given noisy measurements {pk(i), tk(i)}.
To maintain simplicity in the derivation of the algo-
rithm, we omit the index i from wo

i and work with wo

instead. Let us first assume there exists a fusion center
where the measurements by N sectorized base stations
(nodes) are sent to for localization. Then, wo can be
found by minimizing the following hybrid global cost
function over w:

J ctrl(w) =
N
∑

k=1

(

(1− η) J
(p)
k (w) + η ν J

(t)
k (w)

)

(6)

where J
(p)
k (w) and J

(t)
k (w) are the local costs associated

with node k and related to RSS and time interval mea-
surements, respectively. The variable η ∈ [0, 1] specifies
the amount of the participation of RSS and SPT mea-
surements in locating the mobile terminal. Parameter ν

magnifies J
(t)
k (w) to be approximately in the same nu-

merical range as J
(p)
k (w). The local cost functions are

defined as:

J
(p)
k (w) = E

∣

∣pk(i) + 10α log ‖w − sk‖ − hk(i)
∣

∣

2
(7)

J
(t)
k (w) = E

∣

∣tk(i)− ‖w − sk‖/c
∣

∣

2
(8)

where hk(i) = Pt + gk(θu(i)) + 10α log(do). Next, we
elaborate on how the global cost (6) can be optimized
over the network in a distributed and adaptive manner.

3 Adaptive Mobile Localization

In this section, we first sketch the development of a cen-
tralized LMS algorithm and then present the proposed
distributed solution. We use the centralized LMS algo-
rithm as a benchmark in our computer experiments in
Section 4.
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3.1 Centralized LMS Solution

The gradient vector of the global objective function (6)
can be expressed as:

∇wJ
ctrl(w) =

N
∑

k=1

(

(1− η)∇wJ
(p)
k + η ν∇wJ

(t)
k

)

(9)

where
∇wJ

(p)
k =

20α

ln 10
E

{ w − sk
‖w − sk‖2

e
(p)
k (i)

}

(10)

∇wJ
(t)
k = −

2

c
E

{ w − sk
‖w − sk‖

e
(t)
k (i)

}

(11)

with the error functions:

e
(p)
k (i) = pk(i) + 10α log ‖w − sk‖ − hk(i) (12)

e
(t)
k (i) = tk(i)− ‖w − sk‖/c (13)

For minimization of (6), the centralized steepest descent
algorithm takes the form:

wi = wi−1 − µ∇wJ
ctrl(wi−1) (14)

where parameter µ > 0 is the step size, andwi is the es-
timate of the mobile location at iteration i. This iterative
approach may show an abrupt behavior when the mo-
bile terminal gets very close to a sectorized base station.
This is because under these circumstances the gradients
(10) and (11) become very large. This problem can be al-

leviated by multiplying ∇wJ
(p)
k by ‖w−sk‖

2 ln 10/20 and

scaling ∇wJ
(t)
k with c‖w− sk‖/2. Doing so and approx-

imating the gradient (9) with the instantaneous data at
time i, we arrive at the following centralized LMS solu-
tion for mobile localization.

Algorithm 1 : Centralized LMS for mobile localization

∇̂wJk(wi−1) =
[
α(1− η)e

(p)
k (i)− ν η e

(t)
k (i)

]
(wi−1 − sk)

wi = wi−1 − µ

N∑

k=1

∇̂wJk(wi−1)

In this algorithm, the errors e
(p)
k (i) and e

(t)
k (i) are eval-

uated using (12) and (13) at w = wi−1.

3.2 Diffusion LMS Solution

In the proposed algorithm, two nodes are said to be
neighbors if their distance is less than a threshold ro.
A nominal value for the threshold is ro = 2r where r is
the radius of each hexagon in the network. There are
different distributed optimization techniques that can
be applied on (6) to find wo. One possible strategy is
the alternating directions method of multipliers [18, 19]
in which the global cost (6) is decoupled and written as
a group of local constrained optimization problems. In
this method, the constraints force nodes to align their
estimates with that of their neighbors. Therefore, nodes
may not be able to respond quickly to the data with-
out being critically constrained by agreement with their

neighbor. A technique that does not suffer from such
difficulty and endows networks with adaptation and
learning abilities in real-time is the diffusion strategy
[20–23]. In this technique, minimizing the global cost (6)
can be pursued by solving the following unconstrained
local optimization problems for k ∈ {1, · · · , N}:

min
w

{

∑

ℓ∈Nk

cℓ,k
[

(1− η) J
(p)
k (w) + η ν J

(t)
k (w)

]

+
∑

ℓ∈Nk\{k}

pℓ,k‖w − ψℓ‖
2
}

(15)

where Nk denotes the set of neighbors of node k, in-
cluding k itself, ψℓ is a local variable that represents the
global parameter at node ℓ and Nk\{k} denotes the set
Nk excluding node k. In this formulation, {pℓ,k} are
nonnegative parameters and the scalars {cℓ,k} denote
nonnegative entries of a right-stochastic matrix C sat-

isfying, cℓ,k = 0 if ℓ /∈ Nk and
∑N

k=1 cℓ,k = 1.
Following the arguments in [20–22] and performing a
similar normalization as in Algorithm 1, we arrive at
the following normalized diffusion LMS algorithm for
minimizing (6) in a distributed and adaptive manner.

Algorithm 2 : Diffusion LMS for mobile localization

ψk,i = wk,i−1 − µk

∑

ℓ∈Nk

cℓ,k∇̂wJℓ(wk,i−1)

wk,i =
∑

ℓ∈Nk

aℓ,kψℓ,i

In this algorithm, µk > 0 is the step-size at node k,
{wk,i,ψk,i} are intermediate estimates of wo, and

∇̂wJℓ(wk,i−1) =
[
α(1− η)e

(p)
ℓ (i)− ν η e

(t)
ℓ (i)

]
(wk,i−1 − sℓ)

where e
(p)
ℓ (i) and e

(t)
ℓ (i) are evaluated at wk,i−1. More-

over, the parameters {aℓ,k} are nonnegative entries of
a left-stochastic matrix A ∈ R

N×N that satisfy aℓ,k =
0 if ℓ /∈ Nk and

∑

ℓ∈Nk
aℓ,k = 1. We note that the

coefficients {pℓ,k} in (15) are now replaced by the en-
tries of matrix A. In Algorithm 2, the first expression is
an adaptation step where base station k updates its in-
termediate estimatewk,i−1 to ψk,i using measured data
{pℓ(i), tℓ(i)}ℓ∈Nk

. The second expression is a combina-
tion step, in which base station k combines its interme-
diate estimate ψk,i with those of its neighbors to obtain
wk,i.

4 Simulation Results

In our computer experiments, we illustrate the perfor-
mance of the proposed algorithm in tracking a mobile
terminal in a two tier cellular network with 19 radio
tower, N = 57 sectorized base stations, and r = 2km.
In these experiments, the radiation pattern of the direc-
tional antenna can be described using (1) with param-
eters θ3dB = 70 degrees and gmin = −20dB. The RSS
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Fig. 1: The true and estimated mobile trajectory.

parameters are chosen as α = 2.5, Pt = 23dBm, and
do = 50m. The communication between mobile and
sectorized base stations takes place under a line-of-sight
(LOS) condition where lk(i) and bk(i) are zero. The

noise terms n
(p)
k (i) and n

(t)
k (i) are zero mean white, i.i.d

over time and independent over space. The RSS and
SPT noise variances are chosen uniformly from [0.05, 3]
and [0, 3]× 10−12, respectively.

The objective of the network is to cooperatively es-
timate the mobile trajectory, wo

i , which follows the mo-
tion model (4) withwo

−1 = [−r/2, r/2]T , ∆T = 0.1s and
v = 20m/s. The mobile time-varying direction follows
(5) with parameters β = 0.99, φ̄ = −π/2. For the dif-
fusion algorithm, we choose η = 0.5 and ν = 40c, and
consider an equal step-size µdiff , µk = 1 × 10−3 and
wk,−1 = 0 for all k. We use the relative degree crite-
rion [20] to compute A and choose C as the identity ma-
trix. In the centralized set-up, the nodes transmit their
data, {pk(i), tk(i)}, to a fusion center located at (x, y) =
(0, 0). The step-size in the centralized LMS algorithm is
chosen as µ = µdiff/N to ensure the same convergence
rate as that of diffusion LMS. To evaluate the estima-
tion error, we define the mean-square deviation (MSD)
performance measure of diffusion and centralized LMS

algorithm, respectively, as ηdiff(i) = 1
N

∑N

k=1 E‖w̃k,i‖
2

and ηctrl(i) = E‖w̃i‖
2, where w̃k,i = wo

i − wk,i and
w̃i = w

o
i −wi.

Fig. 1 shows the true and estimated mobile trajec-
tory by diffusion LMS over 1000 seconds. As it is seen,
the proposed diffusion LMS tracks well. Fig. 2 illus-
trates the convergence of Algorithm 1 and 2 in terms
of MSD. These results are drawn from the average of
400 independent runs. In this figure, we also compare
the MSD performance of the proposed methods with
that of the decentralized subgradient algorithm intro-
duced in [13]. We observe that the proposed diffusion
algorithm outperforms decentralized subgradient solu-
tion. Moreover, the performance discrepancy between
the proposed diffusion LMS and the centralized LMS is
not significant.
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Fig. 2: MSD learning curve.
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Fig. 3 shows the network MSD performance in
steady-state against the step-size µdiff and µctrl. As this
figure indicates, the MSD curves reach their minimum
at µdiff = 1× 10−3 and µctrl = 1.75× 10−5 which are the
optimal step-size values. For both algorithms, as the
chosen step-sizes move away from their optimal points
in either directions, the MSD increases. The MSD of
the both algorithms grow unbounded if the step-sizes
become larger and pass the solid vertical (green) line.
From this figure, it can be observed that the diffusion
algorithm can achieve the same MSD performance re-
sults as that of the centralized LMS if the step-sizes are
chosen appropriately.

5 Conclusion

We developed a diffusion LMS algorithm to locate and
track mobile terminals in cellular networks. The algo-
rithm uses a hybrid of RSS and SPT measurements to
update its estimate at each sampling time. Computer
experiments showed that the proposed algorithm has
powerful tracking ability and can achieve similar per-
formance as that of the centralized LMS.
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