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ABSTRACT

A multi-shift sensor scheduling method is proposed to extend
the operating lifespan of a wireless sensor network. Sensor
nodes in the WSN are partitioned into N subnetworks and the
operating schedule is partitioned into N shifts of equal du-
ration. Exploiting spatial correlations among sensor nodes,
data collected using each subnetwork can well approximate
the data collected using original sensor network. Each sub-
network also form a connected component to ensure proper
data collection. This task is formulated as a NP-hard con-
strained subset selection problem. A polynomial time heuris-
tic algorithm leveraging breath-first search and subspace ap-
proximation is proposed. Simulations using a real world data
set demonstrate superior performance and extended lifespan
of this proposed method.

Index Terms— Wireless sensor networks, node schedul-
ing, data coverage, connectivity

1. INTRODUCTION

Wireless sensor network (WSN) is an emerging cyber phys-
ical system that gains much attention over the past decade
[1]. The practical usefulness of a WSN not only depends on
its performance but also on its operating lifespan. Prolonged
operating lifespan lowers the maintenance cost and reduces
downtime.

In a densely deployed WSN where numerous redundant
sensor nodes are deployed, not all sensor nodes need to be
active at all times. Instead, taking advantage of the spatial
correlation among data sampled at neighboring sensor nodes,
many sensor nodes may be switched off to low power sleep
mode without affecting overall quality of sensing.

Previously, several sensor node sleep scheduling algo-
rithms have been reported [2, 3, 4, 5, 6, 7, 8]. Among them, a
small number of algorithms [9, 8, 10] eluded to a round-robin
style multi-shift schedule to allow a group of sensor nodes
taking turns to engage sensing tasks. However, the criterion
these algorithms used to partition sensor nodes into different
shifts are mostly based on physical locations of sensors which
is not adaptive to dynamic, time varying sensing environment.

In this work, sensor nodes in the WSN are partitioned into
N subnetworks and the operating schedule is partitioned into
N shifts of equal duration. Each subnetwork only operates on
one duration. A data centric performance criterion is adopted
to optimally partition sensor nodes into different shifts. In
particular, it is stipulated that data collected by the subset of
sensor nodes in each shift should be sufficient for predicting
the data would-be collected by those sleeping sensor nodes.
This data recovery criterion can be easily adapted to heteroge-
neous sensing ranges and time varying sensing channel condi-
tions and hence is inherently superior to the geographic cov-
erage criterion. In addition, among the subset of sensor nodes
assigned to the same shift, it is crucial to ensure these sensor
nodes form a connected network so that sensed data could be
forwarded to a fusion center.

In this work, the WSN lifetime extension problem is for-
mulated as a constrained subset selection problem: partition
the set of sensor nodes into N subsets such that (i) the data
collected by active nodes in each subset can best approxi-
mate the missing data from other sleeping nodes; and (ii) the
connectivity of each subnetwork is maintained. We showed
that the complexity of this problem is NP-hard. A polyno-
mial time heuristic algorithm leveraging breath-first search
and subspace approximation is proposed. Simulation using
real world data set demonstrate superior performance and ex-
tended lifespan of this proposed method.

The rest of this paper is organized in the following way.
In section 2, the background of the problem is introduced. In
section 3, the sensor node scheduling problem is formulated.
In section 4, the connectivity constrained sensor network par-
titioning algorithm is developed. In section 5, simulation set
up and results are presented.

2. WSN NODE SCHEDULING PROBLEM

The WSN node scheduling problem consists of two compo-
nents: performance and connectivity.
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2.1. Data Coverage

When a subset of sensor nodes fall back to sleep mode, the
overall sensing performance may be compromised compared
to the situation when all sensor nodes are active. In this work,
we use data coverage model to quantify the amount of perfor-
mance degradation due to sensor sleeps. It is widely accepted
that in a densely deployed WSN, data captured by neighbor-
ing sensors are highly correlated. Exploiting this spatial cor-
relation, the sensor readings of sleep nodes may be recovered
from those of the active nodes [11, 8]. Obviously, such a re-
covery often is not error free. Therefore, it is appropriate to
use the data coverage error as a performance criterion of a
partitioned WSN.

Denote Y to be a t ×M matrix representing the sensor
data collected from M active sensor nodes within a particular
shift of schedule over time indices {1, 2, · · · , t}. Denote X
to be a t×k matrix representing the sensor data that would be
collected by the k sleep sensor nodes during the same time du-
ration. Our goal is to predict the X matrix based on the given
Y matrix. This is possible if there are high spatial correlation
among the reading of sensor nodes in a WSN. As explained
in [10], under the assumption of spatially correlated sensor
readings, the optimal linear approximation of X by Y such
that ‖X̂−X‖2F (Frobenius norm) is minimized will be

X̂ = YY†X = Y(YTY)−1YTX = YA (1)

where Y† = (YTY)−1YT is the pseudo-inverse of the Y
matrix; and A = Y†X is the spatial correlation between
sensor data of the active nodes and the sleep nodes during
1 ≤ t′ ≤ t. Note that to estimate A, one must also have
the sleep mode data readings X. We will denote this period a
training period during which, the spatial correlation is learned
from the sensor data with all sensor nodes activated.

Suppose one further assume that the spatial correlations
A is slowly time-varying over a testing period following the
training period, then one may use the A matrix computed dur-
ing the training period over the testing period to predict the
data that would be collected at the sleep nodes:

X̂test ≈ YtestA (2)

Assume the sensor nodes will be partitioned into S dis-
joint subsets with each subset scheduled to a separate shift.
One may generalize above mentioned training-testing opera-
tions as follows: Before starting multi-shift rotations, a com-
mon training period during which all sensor nodes are active
will be carried out. Denoting Xi and Yi to be the ith shift
data of the sleep nodes,and active nodes respectively, one may
define a data-centric performance criterion for S-shift parti-
tion as follows:

e = max
1≤i≤S

ei (3)

where

ei =
‖X̂i −Xi‖2

‖Xi‖2
(4)

Note that instead of absolute approximation error, a normal-
ized error is used to deal with variations among different par-
titions. With above definitions, we say sensor nodes in the
WSN are (1 − e) × 100% data-covered by sth-shift active
nodes.

Once the S partition is obtained, the corresponding spatial
correlations Ai = Y†iXi may be computed to recover the
data at the sleep nodes during ith shift (testing period).

2.2. Connectivity

The entire WSN thus may be described as a graph G =
{V,E} where V is the set of indices of sensor nodes and E
is the set of connected edges among sensor nodes.

In a wireless network, two adjacent nodes v and v′ are
connected if the distance between them d(v, v′) is less than
the wireless transmission range rd. An edge e then will be
established between v and v′ in G to indicate that these two
nodes are connected. Path is a sequence of nodes from each
of its nodes there is an edge to the next node in the sequence.
Denote Vs to be the indices of an arbitrary subset of sensor
nodes. If for any two nodes v, v′ ∈ Vs, they are connected to
each other by paths comprised by nodes in this subset, then
the set of the nodes in Vs form a connected component and
will be a valid sensor sub-network.

In this work, for each subset of sensor nodes assigned to a
particular shift, the connectivity of this subset will be exam-
ined using a Breadth First Search algorithm.

3. PROBLEM FORMULATION

Multi-Shift Node Scheduling (MSNS) Problem

With above notations, the WSN Multi-shift node schedul-
ing (MSNS) problem may be formulated as follows:
Given a densely deployed WSN with graph G = {V,E}, par-
tition G into S disjoint sub-graphs {Gs; 1 ≤ s ≤ S} such that
the maximum of data coverage error e is minimized subject to
the constraint that each Gs remains a connected component.

Given any network with N nodes, there are SN−1 possi-
ble partition types. The computation complexity of exhaus-
tive search grows exponentially with respect to N . For each
partition type, the connectivity constraints and data coverage
error can be checked in polynomial time. The problem is a
NP-hard problem.

4. MULTI-SHIFT PARTITION ALGORITHM

In this work, the multi-shift partition algorithm which has
polynomial time complexity is proposed. The algorithm
leverages the hierarchical clustering and benefits from the
assumption that sensors with high correlated data should be
partitioned into different shift. In order to cluster, the distance
between clusters with single node component is defined as
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data recovery error, which indicates the correlation between
data from two nodes.

Let Xk be the kth column of the matrix X, and correspond
to the data collected by the kth sensor node during the training
period. The data correlation between node k and node j is

Ckj =
XT

k Xj

‖Xk‖2 · ‖Xj‖2
(5)

Alternatively, the data recovery error using node k’s data to
estimate node j’s data or vice versa is represnted as:

d(k, j) = ‖Xk − X̂k‖2/‖Xk‖2 = 1− C2
kj (6)

where X̂k = XjX
†
jXk is the projection of Xk to Xj And For

clusters with multiple components such as clusters K,L, the
similarity distance between them is defined as

d(K,L) = min
k∈K,l∈L

d(k, l). (7)

.

Multi-Shift Node Scheduling Algorithm

Initialization: Given data matrix Y, a t × n matrix with data
columns from n nodes, graph adjacency matrix G. Each node
is a cluster.
Clustering highly correlated nodes:

1. Using Y, calculate the distance between any two clus-
ters. Find two clusters I, J with minimum distance
d(I, J). If sum of number of components in two clus-
ters is less than or equal to S, merge them into a cluster.

2. Check all the clusters whether number of member is
equal to S. If it is, all the components in this cluster
quit from clustering.

3. Go back to 1 until no new merge can be conducted or
all nodes quit from clustering.

Partitioning highly correlation nodes:

1. For each cluster, a member is randomly assigned into a
shift. None of component nodes in same cluster can be
assigned into the same shift.

2. Form the graph adjacency matrix Gs for each shift.
Check the connectivity of each shift and if all shifts
form connected subgraphs, continue. if any of those
shifts are not connected, go to 1.

Local optimal feasible solution search:

1. Nodes are allowed to be moved among shifts one by
one. For each possible movement, we choose the one
which minimizes the maximum of the data coverage
errors es and keeps subnetworks of all shifts connected.
Stop when no move can be done or the move results in
higher data coverage error.

5. EVALUATION AND EXPERIMENT

A real-world data set released by Intel-Berkeley Lab is used.
These data samples are temperature readings taken from 54
Mica2Dot nodes over a period of 36 days with a sampling
interval of 30 seconds. Occasional missing data are interpo-
lated from the before and after samples from the same sensor
nodes. Then, each data stream is sub-sampled at an interval
of 1000 seconds. Several data records contain long segments
of missing data and hence are excluded from this experiment.
In the end, data taken from 49 sensors are used in this exper-
iment. To learn the spatial correlation among sensor nodes,
the first 27 hours of sensor records are used as training data.

It is assumed that the wireless communication range of
each sensor node is 12 meters. Experiments are conducted
by using the multi-shift partitioning algorithm. In 3 shift par-
titioning, we run the experiment 100 times. In each experi-
ment, the three shifts remain connected. The data coverage
errors of all 100 tries range from 0.45% to 0.55%. In other
words, one achieves 3-fold sensor operating life-span exten-
sion while maintaining 99.5% data-recovery rate. The sensor
location for different shift of one experiment is shown in Fig-
ure 1.

Fig. 1. Locations of Different Shift for 3 shift partition

Figure 2 shows the average distance of sensor with its
closest neighbor as the function of number of partitions
(shifts). As expected, when the number of shift increases,
the minimum communication radius will also increase to
maintain connectivity. In other words, even the spatial cor-
relation among sensor nodes may support higher number of
partitions, the energy consumption on maintaining connectiv-
ity will limit the number of shifts used.

In Figure 3, the achievable data recovery error versus
number of shifts are plotted. As expected, as the number of
shifts increases, the recovery error increases as well.
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Fig. 2. average distance of sensor with its closest neighbor
change vs the number of shifts

Fig. 3. data coverage error vs number of shifts

6. CONCLUSION

Energy is very limited in wireless sensor networks since usu-
ally each sensor is only equipped with a small battery. One
way to extend the network lifespan is to keep only a part of
sensors active while putting the others in sleep mode. To bal-
ance energy consumption, we propose a Multi-Shift Partition
algorithm to schedule multiple sensor shifts. Our scheme can
extend the network lifespan dramatically. Meanwhile, in or-
der to maintain performance, the spatial correlation among
sensors is exploited to recover data for sleep sensors and the
data coverage error is defined as a criterion for performance
of partitioning. Experiments show that the algorithm achieves
a satisfying result over a real-world sensor dataset.
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