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ABSTRACT

Average consensus (AC) is a popular method for distributed in-

network averaging that is closely related to diffusion processes.

Recently, it has been suggested that AC designs inspired by physical

advection processes feature improved performance. In this paper, we

show how such advection-diffusion inspired AC designs can be ob-

tained for realistic network topologies. The resulting AC algorithms

act like a blender that mixes the measured data. Numerical simu-

lations corroborate the performance improvements of our blending

approach to the design of AC algorithms.

Index Terms— Average consensus, wireless sensor networks,

distributed inference, advection-diffusion equation

1. INTRODUCTION

The distributed computation of the average (arithmetic mean) of

measured data is the basis for more sophisticated distributed infer-

ence algorithms in wireless sensor networks (WSN), e.g., likelihood

consensus [1] or distributed field reconstruction [2]. Average con-

sensus (AC), introduced in [3,4], is a particularly popular method for

distributed averaging. An overview of AC methods is given in [5]

and an AC weight design that optimizes the asymptotic convergence

rate has been proposed in [6]. Further performance improvements

can be obtained with time-varying AC weights, , e.g. [7]. A per-step

MSE-optimal weight design exploiting the measurement statistics

has been described in [8]; in this paper, we found that the correlation

of the data to be averaged has a crucial impact on the performance of

AC, i.e., strong correlation tends to diminish the convergence speed.

In a recent paper [9], the authors use an analogy with fluid dy-

namics to improve the convergence speed of AC based on a dis-

cretized advection-diffusion equation with a simple velocity field

(i.e., flow). However, their design is limited to networks with nodes

uniformly distributed on a torus (i.e., without boundaries). Unfortu-

nately, the practical relevance of such a setup is rather limited.

Inspired by [9], this paper proposes improved AC weight designs

for realistic WSN scenarios. More specifically, our contributions are:

• a new discretization for advection-diffusion processes that

leads to AC designs with improved performance;

• for the case where sensors are arranged on a uniform grid, we

propose new velocity fields and provide a stability analysis

for the resulting AC algorithm (following [10]);

• for arbitrary network topologies, we present an optimization

approach for the advection component of the AC weights;

• we illustrate the performance gains of our AC weight designs

via numerical simulations.

Funded by WWTF Grant ICT08-044 and FWF Grant S10606. The au-
thors thank Yiğit Onat for valuable input.

2. PRELIMINARIES

2.1. Wireless Sensor Networks

We consider WSN consisting of I sensor nodes that are located at

positions ri, i = 1, . . . , I . The WSN topology is modeled via a

graph G = (V, E); here, V denotes the set of nodes (I = |V|) and

E ⊂ V × V is the set of undirected edges, which represent the bidi-

rectional communication links between the nodes.

Two important WSN topologies used in what follows are i) uni-

form rectangular WSN in which nodes are arranged on a square lat-

tice and communicate with their nearest neighbors only; ii) random

geometric WSN, in which the node positions are i.i.d. uniformly

distributed and communication occurs between nodes within a pre-

scribed range.

2.2. Average Consensus

The goal of AC is to compute the average s̄ = 1
I

∑

i
si in a dis-

tributed fashion; here, si denotes the data (measurement) at node

i. Node’s i estimate of the mean at iteration k is given by the state

xi[k]. The states are updated in each iteration according to

xi[k + 1] = wii xi[k] +
∑

j: (i,j)∈E

wij xj [k] ,

with initialization xi[0]= si. The choice of the weights wij will be

discussed in more detail later. The state updates can be rewritten as,

x[k + 1] = Wx[k] , (1)

where the weight matrix is defined by [W ]ij = wij for (i, j) ∈ E or

i = j and wij = 0 otherwise. Convergence of the AC iterations to

the true mean is guaranteed whenever the following conditions are

satisfied: W1 = 1, 1T
W = 1

T , and ρ(W − 1
I
11

T ) < 1, where

ρ(·) is the spectral radius [11]. For node i, the first condition reads

wii +
∑

j: (i,j)∈E
wij=1.

Hence, we rewrite the weight matrix as W = I − D , where

[D ]ij =−wij for (i, j) ∈ E , [D ]ii =
∑

j: (i,j)∈E
wij , and all other

elements are zero. Implicitly we have D1= 0. It is seen that the

design freedom is reduced to ensure the first condition for conver-

gence. For a symmetric weight matrix the second condition holds

automatically if the first one is fulfilled. The third condition implies

that D has to be positive semi-definite with only one eigenvalue at

zero and the spectral radius of D has to be less than two.

There are different methods for the design of the weights wij .

In [6] they present methods that concentrate on the optimization of

the convergence rate under different constraints, e.g., all weights

should be constant (in that case we have D = ǫL where L is the

graph Laplacian and ǫ denotes the global weight). In our numeri-

cal simulations we will use their result for the asymptotically best
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weights, denoted W
CVX since they are a result of a convex opti-

mization problem. In [8], we derived the mean-square-error (MSE)

optimum per-step weights assuming that the second-order statistic of

the initial data is available. Our results revealed that for uncorrelated

states (i.e., during the first few iterations) the Metropolis-Hastings

(MH) weights [12] are close to these optimum weights. The MH

weights WMH are simple to compute in a distributed fashion.

3. ADVECTION-DIFFUSION

3.1. Basic Theory

We start with a brief explanation of the advection-diffusion process

[13], which is a combination of a diffusion process and an advection

process, i.e., a bulk flow induced by an external velocity field. We

consider a quantity x(r, t), with r and t denoting space and time,

respectively. Assuming that the diffusion coefficient is constant, that

the velocity vector v(r) is constant over time, and that there are nei-

ther sources nor sinks, x(r, t) is governed by the advection-diffusion

equation

∂x

∂t
= D∇2x− v · ∇x . (2)

Additionally the equation presumes that the flow created by the ve-

locity field is incompressible, which means that there are no points

where the velocity field starts or ends (i.e., ∇ · v=0). The first term

on the right-hand side of (2) is the diffusion part and the second term

characterizes the advection.

So far we have ignored boundary conditions, which amounts to

a toroidal geometry (cf. [9]). A more realistic scenario is to define

the region of interest as the unit square [0, 1]× [0, 1]. This requires

the specification of boundary conditions for the advection-diffusion

process. For the diffusion we impose a reflection at the boundary

(nothing of the quantity in the unit square gets lost), which is equal

to the condition that the first derivative of the normal component has

to be zero. For the velocity field, the normal component is assumed

to be zero at the entire boundary (nothing is transported outside the

unit square).

3.2. Discretization of the advection-diffusion equation

We next describe the discretization of the advection-diffusion

equation (2), using a different approach than [9]. We discretize

the advection-diffusion equation by using the finite difference

method [14]. In particular, our scheme is similar to the second-

order centered spatial differencing and first-order forward temporal

differencing (Euler) scheme, which is also called FTCS (forward

time, centered space); we discretize the first-order derivative slightly

differently, however. In particular, we assume that the velocity

vector field is sampled between the field sampling points. Our

method yields the same result as in [13] where they use control-

volume formulation for the discretization which is well tailored for

advection-diffusion processes. In [9], in contrast, they are using

FTBS (forward time, backward space). Due to lack of space, we

only describe the main discretization steps.

The advection-diffusion field is sampled on a two dimensional

regular grid, i.e., r1 = p∆r and r2 = q∆r with p, q ∈ N. More-

over, time is discretized as t= k∆t with k ∈ N. Hence, we obtain

the sample points x[p, q, k] = x(p∆r, q∆r, k∆t) from the contin-

uous field x(r1, r2, t). The velocity vector is sampled between the

grid points, which is motivated by the fact that the velocity field de-

termines the interaction of two points. The velocity field v(r) =

[v1(r) v2(r)]
T is thus sampled in the two main directions of the

grid as v1[p, q] = v1((p+
1
2
)∆r, q∆r), and v2[p, q] = v2(p∆r, (q+

1
2
)∆r). For the moment, we assume a periodic spatial field, which

means that there are no boundaries. The discretization of the advec-

tion part v · ∇x = v1(r1, r2)
∂x(r1,r2,t)

∂r1
+ v2(r1, r2)

∂x(r1,r2,t)
∂r2

is

now obtained by replacing derivatives with first-order centered dif-

ferences,

v1(r1, r2)
∂x(r1, r2, t)

∂r1
≈

v1(r1 + 1/2∆r1, r2)x(r1+∆r, r2, t)

2∆r

−
v1(r1, r2 − 1/2∆r)x(r1−∆r1, r2)

2∆r

=
v1[p, q]x[p+ 1, q, k]− v1[p− 1, q]x[p− 1, q, k]

2∆r
.

This is the average of the centered difference at (r1+1/2∆r, r2)
and at (r1−1/2∆r, r2), using the property that ∇ · v = 0. For

the diffusion D∇2x = D ∂2x(r1,r2,t)

∂r2
1

+ D ∂2x(r1,r2,t)

∂r2
2

we have to

approximate the second-order derivatives of the field, e.g., for the r1
direction

∂2x(r1, r2, t)

∂r21
≈

x[p+ 1, q, k]− 2x[p, q, k] + x[p− 1, q, k]

(∆r)2
,

and similarly for the r2 direction. This step is the same as in [9].

Finally, the temporal forward difference reads

∂x(r1, r2, t)

∂t
≈

x[p, q, k + 1]− x[p, q, k]

∆t
.

With these definitions, and arranging the spatial field samples into

a vector x[k], the finite-difference approximation of the advection-

diffusion equation (2) amounts to the linear system of equations

x[k + 1] = (I − αD − ζC)x[k] . (3)

Here, the matrix D represents the diffusion and the matrix C

(which contains the sampled velocity field) summarizes the advec-

tion. Moreover we have α = D∆t

∆r2
and ζ = vmax∆t

2∆r
, with vmax the

maximum velocity at the sampling positions and hence we have

max |[C]ij | = 1. The ratio ζ/α is called the Peclet number [13].

The matrices D and C are directly obtained by using the discretiza-

tion results. The matrix D equals 4 on the main diagonal and in

each row (or column) there are four elements equal to −1 indicating

a link to an immediate neighbor on the sampling grid. The matrix

C has the same zero pattern as D, with the difference that even

the diagonal elements are zero. The values of the non-zero entries

depend on the local velocity vectors, i.e., the values v1[p, q]/vmax

and v2[p, q]/vmax are assigned to [C]ij accordingly. Since the ve-

locity which points from one node to another is the negative of the

velocity pointing into the other direction, C is skew-symmetric, i.e.,

C=−C
T ; this property does not hold for the discretization in [9].

If the field is constant and there is only diffusion, there is no

change in the field over time. In the discretization this amounts to

x[k+1] = x[k] and requires D1 = 0, which is fulfilled by the

discretization. If there is advection, the same condition has to hold

for C, but this follows also from the incompressible flow condition

∇ · v = 0. Because of the discretization of the nabla operator we

have 1
∆r

(v1[p, q]−v1[p − 1, q]+v2[p, q]−v2[p, q − 1]) = 0. This

means that the outgoing velocities at each node sum up to zero since

v1[p−1, q] and v2[p, q−1] denote incoming velocities and hence

the sign has to be changed. Hence, it follows that the row-sums and

column-sums of C are zero, i.e., C1=0 and 1
T
C=0.
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rotation fields ∇× v = c regular rotation fields

Fig. 1. Examples of different rotational velocity fields.

4. BLENDING IN WSN WITH UNIFORM GRID

TOPOLOGY

4.1. Relation between AC and advection-diffusion

We can interpret the discrete advection-diffusion process (3) as an

AC algorithm by interpreting the sampling positions as sensor posi-

tions and the field samples as AC states. Specifically, comparing (1)

and (3) formally yields W = I − αD − ζC. The update equation

(3) requires only local computation, i.e., each sampling point which

is equal to one sensor node uses the values of the direct neighbor-

ing sampling points (four in total, because there are two in each di-

rection). Hence, the updates are processed on a 4-regular toroidal

(or periodic) graph where the points are located on a regular grid.

A comparison of the graph Laplacian and the discretized Laplacian

operator (∇2) of the advection-diffusion equation reveals that they

are equal, i.e., L=D. Additionally, if α=ǫ the advection-diffusion

process (with ζ = 0) is equal to AC with constant weights. For the

case ζ 6= 0, there is an additional component ζCx[k] in the update

equation. Because of C1= 0 and 1
T
C = 0 this term does not in-

fluence the average of the state vector and the fact that any constant

vector is a fixed point of AC. The term ζC acts like a blender on the

data and influences the convergence. However, if ζ is too large, the

iterations become unstable.

4.2. Design of the velocity field

In [9] the velocity field was designed according to the condition

v(r1, r2, t) = [v1(r2, t) v2(r1, t)]
T , which simplifies the derivation

of theoretical results but restricts the setting to toroidal topologies.

For practical WSN with boundaries, this is not feasible and hence we

need different velocity fields. A natural choice are rotational vector

fields. Inspired by physics it is possible to generate vector fields that

fulfill ∇× v=c (where c ∈ R is arbitrary) under the constraint that

∇ · v=0. Some examples are shown in Fig. 1, where it is seen that

the absolute value of the velocity decreases when approaching the

center. Since the design of such rotational fields is involved, we use

a modification which we call regular rotational vector field. Here,

each velocity vector has the same length and each vector points in

one of the two main directions. Realizations of regular rotational

fields can be found in Fig. 1. It is seen that the vectors in the center

have the same length as those at the boundary and therefore entail

stronger advection. It is also possible to change the velocity direc-

tion of some of the cycles, which intuitively provides an improved

blending. Performance results are provided in Section 6.

4.3. Convergence

In this section we provide sufficient conditions for the convergence

of AC with advection for regular rotation fields. To that end, we fol-

low [10], where the so-called von Neumann analysis [15] is applied

to test the stability of the FTCS method. With this analysis it can

be checked whether any averaging error x[k] − s̄1 decays to zero.

Since the error can be decomposed into Fourier modes with non-zero

spatial frequency, it suffices to consider those modes separately. The

Fourier modes are given by

m[p, q, k] = ξk exp{ι(pθ1 + qθ2)} ,

where ι denotes the imaginary unit and θm = km∆x, m = 1, 2,

with km denoting the wave number (hence, −π≤ θm ≤ π). Insert-

ing these modes into the local discretized update equation (cf. [10],

which is similar to Section 4.2), we obtain

ξ =1− 2ι(ζ1 sin(θ1) + ζ2 sin(θ2))

+ 2α(cos(θ1) + cos(θ2)− 2) ,

The values ζ1 and ζ2 represent the velocities in the two spatial direc-

tions. To ensure convergence we need to guarantee that |ξ|2 < 1 for

all θ1 and θ2, which means that all spatial frequency modes decay as

the iterations progress. The results of [10] require that α< 1/4 and

ζ21 +ζ22 <α/2, which are sufficient and necessary conditions for von

Neumann stability for the case that α and ζm are spatially constant

and that the sampling points lie on a torus.

In our case, we have the FTCS method and assume regular rota-

tional velocity fields (but still on a torus). For this setting, we arrive

at the same result under the assumption that one of the two ζ is zero

since only two of the possible four velocities around each node are

zero and these two velocities have to be equal and are represented

by the nonzero ζ. Hence, we obtain α<1/4 and ζ2≤α/2 as suffi-

cient conditions for convergence (the first one is also necessary). We

will see in Fig. 2 that the real stability bound described by the sec-

ond condition is a bit off from these sufficient conditions, which can

be explained by the fact that the cycles on which spatial waves are

propagated and amplified through advection have limited size and

therefore in particular small spatial frequencies are attenuated by the

topology.

5. BLENDING IN WSN WITH ARBITRARY TOPOLOGY

So far we considered rotational fields on regular grid graphs, whose

practical importance is limited. Hence, we next attempt to gener-

alize the idea of blending the data via rotational advection fields to

arbitrary WSNs in order to improve the AC performance. To this

end we start with an AC diffusion matrix D and add an optimized

advection matrix C to improve performance. First, we show how

to analytically construct the matrix C for any given graph and ve-

locity vector and then we present an approach to design appropriate

velocity fields.

The velocity vector v has |E| elements, where each element de-

fines the velocity for one edge (the sign defines the direction). To

construct the advection matrix C we need the incidence matrix of

the underlying graph Gas defined in [8]. The incidence matrix B

comes with a permutation matrix P such that the adjacency matrix

of the graph can be written as A = BPB and the graph Laplacian

reads L = BB
T −BPB

T . We restrict to the case where the per-

mutation matrix is defined as P = I⊗(E−I), where E denotes the

all one matrix. Additionally we need the matrix F = I ⊗ [1 − 1]T .

With these matrices it is possible to construct proper advection ma-

trices C according to

C = BP diag{Fv}BT . (4)

In general the incompressible flow condition is not automatically ful-

filled for any such C, i.e., it has to ensured via the design of the

4586



Anosov (torus & FTBS)
min{ρ(·)} = 0.9834
α ≈ 0.15, ζ ≈ 0.52

ζ

α

0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

rotation (torus & FTBS)
min{ρ(·)} = 0.9841
α ≈ 0.22, ζ ≈ 0.19

ζ

α

0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

rotation (torus)
min{ρ(·)} = 0.9781
α ≈ 0.25, ζ ≈ 0.47

ζ

α

0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

rotation
min{ρ(·)} = 0.9782
α ≈ 0.25, ζ ≈ 0.43

ζ

α

0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

Fig. 2. Spectral radius for different advection and diffusion parameters on uniform grid WSN with 625 nodes (the additional line in the third

plot indicates the theoretical sufficient condition for convergence).

velocity vector v. The construction in (4) shows that C depends

linearly on v.

The velocity vector is obtained by solving the optimization prob-

lem,

minimize f(v)

subject to C1 = 0,
∥

∥

∥
I −D

AC −C −
1

N
11

T
∥

∥

∥

2
< 1, (5)

where f(v) is a suitable convex function (see below), chosen to in-

crease the advection of the resulting algorithm. The first constraint

ensures an incompressible flow and the second constraint enforces

convergence. The matrix D has to be prescribed (e.g., using the

standard designs mentioned in Section 2.2) and has to fulfill all AC

convergence conditions. The stability constraint (5) can be replaced

with the more stringent condition 0≤wij±vij≤1 for all (i, j) ∈ E ,

which is motivated by results in [10]. The resulting optimization

problem contains only local conditions. We therefore expect that for

specific target functions this problem can be solved in a distributed

manner.

To obtain a suitable objective function f(v) we again use the

idea of rotation fields. Essentially, we impose an initial target ve-

locity vector that mimics a rotational field and use as convex objec-

tive function the Euclidean distance to this target velocity field, i.e.,

f(v)=‖v−vinit‖2. We generate the target velocity vector vinit using

the direction of each edge with respect to a circular reference field.

In particular we consider edge l which links node i and node j. Their

positions ri and rj are relative to the center of the region in which

the nodes are distributed. Hence we obtain,

[vinit]l =
2rT

i Trj

E{|ri − rj |}E{|ri + rj |}
, T =

[

0 1
−1 0

]

,

where E{·} denotes the expected value.

6. NUMERICAL RESULTS

The spectral radius ρ(W − 1
N
11

T ) is an indicator for the conver-

gence speed for AC (cf. [6]). Therefore, we show the impact of the

diffusion and advection component on the spectral radius in Fig. 2

for different advective flows in uniform grid WSN with 625 nodes.

Besides Anosov flow [9] we used rotational velocity fields where 12

rotation rings are grouped into four groups of three, each group ro-

tating in the opposite direction (see the rightmost field in Fig. 1).

It is seen that for FTBS discretization the regular rotational flow

yields almost the same minimum spectral radius as the periodically

changing Anosov flow, but for our discretization proposed in Sec-

tion 4.2, the minimum spectral radius decreases slightly. For the

M
S

E
[d

B
]

iteration k

MH

CVX

MH + blending

CVX + blending

MH + blending (v2)

optimum symmetric

100 101 102

-60

-50

-40

-30

-20

-10

0

Fig. 3. Convergence behavior for different weights for random ge-

ometric graphs with I =100 and initial low-pass fields with cut-off

frequency 0.1.

non-toroidal geometry with boundaries, the minimum spectral ra-

dius hardly changes. Moreover we can conclude that the proposed

sampling performs best with maximum diffusion (α≈ 1/4) and ad-

vection. Numerical MSE results (not shown) corroborate these find-

ings and demonstrate even stronger performance improvements with

our proposed method.

We next consider WSN modeled by random geometric graphs

with 100 nodes (each node has a communication range of 0.2). The

sensors measure and average a low-pass field using various AC algo-

rithms with different weight designs, augmented with the blending

of Section 5. In Fig. 3 we have plotted the MSE (averaged over 500

scenarios) versus the number of iterations. It is seen that blending

improves the performance for MH and CVX weights by about 10dB

after 100 iterations (similar gains were observed also for other low-

pass fields with different characteristic). Even applying our modi-

fied stability constraint (labeled ‘v2’ in Fig. 3) yields excellent per-

formance. Comparing the curves to the per step MSE-optimum re-

sults of [8] let us conclude that the advection approach (with CVX

weights) clearly outperforms the best symmetric weights. We also

tested blending for dynamic AC [16] and observed a similar perfor-

mance increase (results not shown).

7. CONCLUSIONS

We have shown that through an appropriate discretization method it

is possible to augment classical AC schemes with rotational flows,

thereby achieving blending schemes that achieve a faster mixing of

the data. Compared to [9], our approach requires neither toroidal

geometries nor a time-varying flow. Our numerical results verify

the superiority of rotational flows. In particular their use in general

WSNs provides a tremendous performance increase and even out-

performs the per-step optimum symmetric weights.
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