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ABSTRACT

This work proposes a strategy to adjust the combination
weights of an adaptive network in order to attain both faster
convergence during the transient phase and lower mean-
square-error during the steady-state phase. Optimal combi-
nation weights are designed for both phases, and a procedure
for detecting the transition from one phase to the other is also
described. Simulation results illustrate the operation of the
proposed strategy.

Index Terms— Adaptive Networks, Phase Detection

1. INTRODUCTION AND RELATED WORK

Adaptive networks consist of a collection of agents that inter-
act with each other through in-network local processing rules
in order to estimate and track parameters of interest. The
individual agents use combination weights to aggregate the
information from their neighbors. Among the various static
combination rules that have been used before we mention the
uniform rule [1], the Laplacian rule [2, 3], and the Metropo-
lis rule [2]. In previous works [4–6], several schemes were
proposed for adaptively adjusting the combination weights in
diffusion implementations in order to minimize the network
mean-square-error performance. These adaptive schemes
were shown to improve the steady-state performance at the
expense of some deterioration in convergence rate due to the
adaptation of the combination coefficients.

In this work, we propose a mixed strategy that offers the
advantage of both faster convergence rate and better steady-
state performance. We show that the adjustment of the com-
bination coefficients can be split into two phases. During the
network transient phase, the coefficients are selected to en-
sure fastest convergence. The arguments will show that dur-
ing this phase, the weights should be chosen according to the
uniform combination rule. Subsequently, the network should
choose the weights in order to minimize its mean-square-error
performance. The discussion will further show that possible
constructions for the weights during this second phase are ac-
cording to the relative-variance rule defined later in (19). It
is clear, though, that in order to implement this policy, nodes
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need to know when to switch from operating in the transition
phase to operating in the steady-state phase. We therefore for-
mulate a hypothesis testing problem at each node that enables
the nodes to detect when the network is switching from one
phase to the other. In this manner, the proposed strategy for
adjusting the combination weights becomes fully adaptive and
ends up leading to better mean-square-error performance at a
desirable faster convergence rate.

We focus in this article on diffusion strategies for adap-
tation and learning over networks. These strategies have
been shown before to have superior mean-square-error per-
formance than other distributed strategies such as consensus-
based solutions [7]. There have of course been useful studies
in the literature on accelerating the convergence rate of con-
sensus strategies (e.g., [8–12]). However, these works focus
on the traditional consensus implementation for computing
averages and do not deal with the broader problem of adaptive
implementations with streaming data, which is the problem
of interest in our investigation.

2. NETWORK MODEL

2.1. Diffusion Strategy

At each time i ≥ 0, each node k has access to a scalar mea-
surement dk(i) ∈ C and a 1 × M regression vector uk,i ∈
C1×M . The measurements are assumed to be related via the
linear regression model:

dk(i) = uk,iw
o + vk(i) (1)

where wo ∈ CM×1 is the target vector to be estimated and
vk(i) ∈ C is measurement noise.

In adaptive networks, the nodes update their estimates of
wo by communicating with their neighbors. At every time in-
stant i, every node k updates its estimate for wo in a two-step
diffusion process involving adaptation and combination. The
adapt-then-combine (ATC) diffusion strategy is described as
follows [13, 14]:

ψk,i = wk,i−1 + μku
∗
k,i[dk(i)− uk,iwk,i−1] (2)

wk,i =
∑
�∈Nk

a�kψ�,i (3)

where the symbol Nk denotes the set of neighbors of node
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k. In the first step (2), an intermediate estimate ψk,i is de-
termined by adapting the existing estimatewk,i−1 using local
data. The parameter μk is a positive step-size factor. The sec-
ond step (3) uses non-negative coefficients {a�k} to combine
the estimates from the neighbors. If we collect the coeffi-
cients {a�k} into an N × N matrix A, then A and its entries
are required to satisfy:

AT1 = 1, alk ≥ 0, a�k = 0 if � /∈ Nk (4)

in which case A is a left-stochastic matrix (the entries on each
of its columns add up to one).

2.2. Mean-Square Performance

Assume the noise process vk(i) is temporally white and
independent over space with variance σ 2

v,k. Assume like-
wise that the regression data uk,i are also independent
over space and temporally white with covariance matrix
Ru,k = Eu∗

k,iuk,i > 0. Introduce the weight-error vector
w̃k,i = wo−wk,i and collect the error vectors from across the
network into the column vector, w̃i = col{w̃1,i, . . . , w̃N,i}.
It can be shown that, under expectation and for sufficiently
small step-sizes, it holds that [13–15]

E‖w̃i‖2 = E‖w̃i−1‖2B∗B + Tr(Y) (5)

where

B � AT (I −MRu) (6)

Y � ATMSMA (7)

Ru � diag{Ru,1, Ru,2, ..., Ru,N} (8)

S � diag{σ2
v,1Ru,1, σ

2
v,2Ru,2, ..., σ

2
v,NRu,N} (9)

M � diag{μ1IM , μ2IM , ..., μNIM} (10)

A � A⊗ IM (11)

The network mean-square-deviation (MSD) at time i is de-
fined as

ξ(i) � 1

N

N∑
k=1

E‖w̃k,i‖2 = 1

N
E‖w̃i‖2 (12)

Relation (5) can be used to deduce that the steady-state MSD
performance of the network is given by the following expres-
sion:

MSDnetwork
steady � lim

i→∞
ξ(i) =

1

N

∞∑
i=0

Tr(BiYB∗i) (13)

where the step-sizes {μk} are chosen small enough to ensure
the stability of the matrix B.

Several earlier studies focused on selecting the combina-
tion weights {a�k} in order to minimize the network MSD
level given by (13) — see [4, 6]. These schemes help reduce
the MSD level albeit at some degradation in convergence rate.
In this work, we would like to select the weights in order to

attain two objectives: minimize the MSD and maximize the
convergence rate.

3. TRANSIENT PHASE

It can be deduced from (5) that the convergence rate of the
diffusion strategy is determined by [ρ(B)]2, in terms of the
square of the spectral radius of B. We can therefore con-
sider the following optimization problem during the transient
phase:

min
A

ρ(B) (14)

subject to AT1 = 1, a�k ≥ 0, a�k = 0 if � /∈ Nk

Finding the optimal A is generally a non-trivial problem. To
proceed, we consider the max norm

‖A‖max � max
1≤�,k≤N

|a�k| (15)

which is a generalized matrix norm without the submulti-
plicative property. We further define the norm ‖A‖ g-max �
N · ‖A‖max , which can be verified to satisfy the submulti-
plicative property, i.e., ‖AB‖ ≤ ‖A‖ · ‖B‖ [16]. Instead of
minimizing ρ(B), we shall minimize an upper bound on ρ(B)
given by:

ρ(B) = ρ
[AT (I −MRu)

]
≤ ‖AT (I −MRu)‖g-max

≤ ‖A‖g-max · ‖I −MRu‖g-max

= N · ‖A‖max · ‖I −MRu‖g-max (16)

Using the structure A � A ⊗ IM , it holds that ‖A‖max =
‖A‖max. Therefore, problem (14) is replaced by

min
A

max
1≤l,k≤N

alk (17)

subject to AT1 = 1, a�k ≥ 0, a�k = 0 if � /∈ Nk

The solution to problem (17) is the uniform rule:

a�k =

{ 1
|Nk| , if l ∈ Nk

0, otherwise
(18)

which is one of the most widely discussed combination rules
in the literature.

Result (18) suggests that during the transient phase, it is
best for the nodes to employ uniform combination weights
in order to speed up convergence (and, hence, speed up the
diffusion of information through the network during the ini-
tial learning phase). The result is intuitively appealing. Dur-
ing the transient phase, the agents have not had sufficient
time to accumulate enough information about the network
and their neighbors to weight these neighbors differently. The
most prudent action is therefore to assign equal weights to the
neighbors initially.
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4. STEADY-STATE PHASE

Although the static uniform combination rule (18) enhances
the convergence speed during the initial transient phase,
adaptive combination rules can provide superior steady-state
mean-square performance in general [4,5,13,17,18]. We will
consider the adaptive relative variance rule proposed in [6,14]
since it provides good steady-state MSD:

a�k(i) =

⎧⎨
⎩

γ−2
�,k(i)∑

j∈Nk
γ−2
j,k(i)

, if � ∈ Nk

0, otherwise
(19)

where the scalar parameter γ2
�,k(i) is updated according to the

following first-order smoothing model:

γ2
�,k(i) = (1− νk)γ

2
�,k(i− 1) + νk‖ψ�,i −wk,i−1‖2. (20)

where 0 < νk � 1 is a positive coefficient and γ2
�,k(−1) = 0

is set for all k and �. We now need to explain how to select the
switching time between the transient and steady-state phases.

5. PHASE TRANSITION

We develop a distributed procedure to implement the task of
switching from the transient phase to the steady-state phase
(i.e., for switching from the combination weights (18) to the
combination weights (19) or other similar adaptive weights)).
In the transient phase, the estimation error is generally much
larger than the noise variance. Therefore, we can neglect the
second term on the right-hand side of (5) and write for the
transient phase:

E‖w̃i‖2 ≈ E‖w̃i−1‖2B∗B = E
(
w̃∗

i−1B∗Bw̃i−1

)
(21)

Since B∗B is Hermitian, we apply the Rayleigh-Ritz theo-
rem [16] and obtain that

λmin(B∗B)E‖w̃i‖2 ≤ E‖w̃i−1‖2B∗B ≤ ρ(B∗B)E‖w̃i‖2 (22)

Therefore, during the initial learning phase, the network MSD
is upper and lower bounded by exponentially decaying func-
tions. Consequently, the evolution of the transient network
MSD can be approximated by ξ(i) ≈ κ · ξ(i − 1), where
κ is a positive constant less than one because of the condi-
tion ρ(B) < 1 for mean-square convergence. At every time
i, nodes can estimate the instantaneous network MSD using
local data as follows:

ξk(i) �
1

|Nk|
∑
�∈Nk

‖ψ�,i −wk,i−1‖2 ≈ ξ(i) (23)

Due to measurement and gradient noise, these locally ob-
served network MSD values suffer from fluctuation noise. We
model the fluctuation as a temporally independent and zero-
mean additive white Gaussian noise, εk(i), with variance σ2

ε .
Therefore, if we consider a time period from t = i−L+1 to
i, during the transient phase we can write

ξk(t) = αk · κt−(i−L+1) + εk(t) (24)

Fig. 1: Two sliding windows are used to detect the phase tran-
sition. Data from window W1 are used to estimate κ and data
from window W2 are used to detect the transition from tran-
sient to steady-state operation.

and during the steady-state phase we have

ξk(t) = αk + εk(t) (25)

for some unknown value αk at the start of the observation
period. Let us define

xk,i � [ξk(i − L+ 1), · · · , ξk(i)]T (26)

zk,i � [εk(i − L+ 1), · · · , εk(i)]T (27)

sκ � [1, · · · , κL−1]T (28)

Then, the MSD window vector xk,i can be modeled as fol-
lows during the transient and steady-state phases:

transient : xk,i = αk · sκ + zk,i (29)

steady-state : xk,i = αk · 1L + zk,i (30)

where 1L is a L× 1 vector with all entries being one.

We propose a switching method that relies on the use of
two overlapping sliding windows, illustrated in Figure 1, to
estimate κ and to decide on the transition phase. Each window
is of size L with indices W1 = {i − 2L + 2, ..., i − L + 1}
and W2 = {i − L + 1, ..., i}. The windows share the MSD
value at time i−L+ 1. Then, xk,i−L+1 and xk,i refer to the
local MSD values within windows W1 and W2, respectively.
We now describe the operation of the detection scheme for
a generic node; we drop the node index k for simplicity. In
the algorithm, the first window W1 is assumed to be at the
transient phase and we use its MSD values to estimate κ. We
can formulate this estimation problem as a nonlinear least-
squares (LS) problem to minimize:

J(κ, α) =(xi−L+1 − α · sκ)T (xi−L+1 − α · sκ) (31)

This model is linear in α and nonlinear in κ since sκ includes
exponents of κ. The solution can be obtained by sequentially
estimating κ and α [19]. The value of α that minimizes (31)
for a given κ is

α̂ = (sTκ sκ)
−1sTκxi−L+1 (32)

and the resulting LS error is

J(κ, α̂) =xT
i−L+1[I − sκ(s

T
κ sκ)

−1sTκ ]xi−L+1 (33)

Then, the optimal least-squares estimate (LSE) for κ is ob-
tained by solving the following problem:

κ̂LSE = argmax
κ

(xT
i−L+1sκ)

2

sTκ sκ
(34)
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The solution of (34) generally generally lacks a closed-form
expression due to the nonlinear exponents of κ in sκ, and
requires numerical computing methods such as the Newton-
Raphson iteration [20]. We provide an alternative sub-optimal
estimate to reduce the computational complexity. One reason-
able way to approximate κ is to use the ratio of two consec-
utive MSD values, as suggested by (24). Therefore, we can
average this ratio through time to obtain a sub-optimal esti-
mate for κ:

κ̂ � 1

L− 1

i−L+1∑
i1=i−2L+2

ξ(i1)

ξ(i1 − 1)
(35)

The MSD values in the second window, W2, are used for
hypothesis testing to detect whether we are operating in the
transient phase H0 or the steady-state phase H1, namely,

H0 : xi = α0 · sκ + zi
H1 : xi = α1 · 1L + zi

(36)

We can utilize the generalized likelihood ratio test, which es-
timates unknown parameters under each hypothesis and then
decides on the hypotheses. The unknown parameter κ of s κ is
estimated in (35). Therefore, for the transient phase H0, the
estimate for α0, denoted by α̂0, is given in (32) as

α̂0 = (sTκ sκ)
−1sTκxi (37)

Similarly, the estimate for α1 for the steady-state phase H1 is
obtained by replacing sκ by 1L:

α̂1 = (1T
L1L)

−11T
Lxi (38)

When detecting the hypotheses, we assume equal prior prob-
abilities and seek to maximize the likelihood function where
we decide for H0 if

p(xi|H0) > p(xi|H1) (39)

and decide for H1 if

p(xi|H0) ≤ p(xi|H1) (40)

Since the noise process εk(i) is assumed to be a zero-mean
and temporally independent Gaussian process, p(x i|H0) and
p(xi|H1) can be expressed as

p(xi|H0) =
1

(2πσ2
ε )

L/2
· e−

1
2σ2

ε
‖xi−α̂0sκ‖2

(41)

and

p(xi|H1) =
1

(2πσ2
ε )

L/2
· e−

1
2σ2

ε
‖xi−α̂11L‖2

(42)

Therefore, each node k makes a decision based on the follow-
ing decision rule

‖xi − α̂0sκ‖2
H0

≶
H1

‖xi − α̂11L‖2 (43)

Once node k detects that steady-state is reached, it employs
adaptive methods to adjust the combination weights, such as
the one given by (19).
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Fig. 2: Topology and performance comparison in terms of network
MSD with µ = 0.001.

6. SIMULATION RESULTS

In this section, we simulate the proposed strategy, and com-
pare it with the uniform combination rule and the adaptive
relative variance rule. The network has N = 20 nodes and its
topology is shown in Figure 2. The length of w o is M = 8
and we randomly choose its entries and normalize to ‖w o‖ =
1. The regressor {uk,i} is zero-mean and Ru,k is diagonal
with entries uniformly generated between [25, 40]. The back-
ground noise vk(i) is temporally white and spatially indepen-
dent Gaussian distributed with zero-mean and σ 2

v,k uniformly
selected between [−30, 0] (dB). We assume a uniform step-
size μ = 0.001 for all nodes. When using the adaptive rel-
ative variance rule in (19), we set νk = 0.2. The network
MSD performance is simulated in Figure 2. It is observed that
our proposed strategies achieve faster convergence rate than
the adaptive relative variance rule and nearly minimal steady-
state MSD. It should be noted that a larger window size L
gives a lower detection error and thus lower steady-state MSD
in general. Furthermore, the sub-optimal estimate of κ in (35)
with lower complexity provides good performance, compared
with the optimal LSE estimate in (34).

7. CONCLUSION

We proposed an operating strategy to adapt the combination
weights over adaptive networks. The proposed procedure can
achieve both optimal transient and steady-state network per-
formance.
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