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ABSTRACT

We consider a collaborative estimation problem using dependent
observations in a wireless sensor network, where each sensor aims
to maximize its estimation performance in terms of Fisher informa-
tion (FI) by forming coalitions with other sensors and collaborating
within a coalition. The energy consumed by the sensors increases
with the size of the coalition and hence we prove that grand coali-
tion will not form. We investigate the formation of non-overlapping
coalitions such that each sensor’s performance is maximized under
a specific energy constraint. We decouple marginal and dependent
components of FI obtained from the joint distribution by using cop-
ula theory. We introduce the concept of diversity gain and redun-
dancy loss and demonstrate how a copula based formulation allows
us to characterize these concepts. Distributed estimation problem
is formulated as a coalitional game. A merge-and-split algorithm is
used for finding an optimal partition. Stability of the proposed al-
gorithm for this game is discussed. Finally, numerical results are
discussed.

Index Terms— Distributed estimation, Fisher information,
Coalitional game, Dependent observations, Copula theory

1. INTRODUCTION

In a distributed estimation problem, each sensor collects observa-
tions regarding a parameter of interest, then shares them with other
sensors or transmits to the fusion center (FC). To reduce the energy
cost for communication, the observations may be quantized before
transmission. The distributed nature of wireless sensor networks in-
dicates a tradeoff between minimizing the communication cost and
maintaining acceptable performance levels. Although there has been
a lot of work on distributed estimation with conditionally indepen-
dent observations (see e.g. [1] and references therein), much less has
been done for the dependent observations case. Parameter estimation
with dependent observations in a variety of communication scenar-
ios was considered in [2], but was limited to the case of “geometric”
dependent Gaussian noise.

Dependence among observations may make some sensors’ mea-
surements redundant at the FC. An extreme case is that when two
sensors’ observations are identically distributed and highly pos-
itively correlated, the second sensor will contribute little to the
overall performance, and will become “redundant”. Since trans-
mitting “redundant” observations from battery powered sensors is
energy inefficient, we have an opportunity to conserve energy via
collaboration.
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Air Force Office of Scientific Research (AFOSR) under Grants FA9550-10-
1-0263 and FA9550-10-1-0458.

We formulate a novel distributed estimation framework where
each individual sensor is capable of sensing and estimating and there
is no FC. Sensors form coalitions and collaborate within a coali-
tion by sharing their observations, such that certain estimation per-
formance is maintained and energy efficiency is increased. In our
framework, each sensor aims at maximizing its own performance,
and thus that of the coalition to which it belongs, through coopera-
tion. The “redundant” observations in the parallel framework, will
be fully exploited in our framework.

Since both, estimation performance and energy cost, are increas-
ing functions of the coalition size, there is a tradeoff between the per-
formance and energy efficiency. Thus, the problem is to find a set of
non-overlapping coalitions to maximize each coalition’s estimation
performance under certain energy efficiency constraints. We employ
a game theory based approach and formulate our collaborative dis-
tributed estimation problem as a coalition formation game. In our
framework, each sensor is characterized not only by its individual
estimation performance, which is achieved with its own observation,
but also by its dependence with other sensors. We use copula theory
to model and analyze the dependence among sensor observations.

1.1. Related work

The effect of dependent noise and hence dependent observations on
FI is studied by Yoon and Sompolinsky in [3]. The authors show
that, in the biologically relevant regime of parameters, positive cor-
relations decrease the estimation performance compared with uncor-
related population. Sundaresan et al. [4] consider location estima-
tion of a random signal source where they focus on improving sys-
tem performance by exploiting the spatial dependence of sensor ob-
servations. Copula based approaches for centralized and decentral-
ized detection using dependent observations have been considered
by Iyengar et al. [5] and Sundaresan et al. [4, 6].

Several authors have used game theory for statistical inference;
such as measurement allocation [7], communication [8], and spec-
trum sensing [9].

1.2. Preliminaries

In this paper, dependence is characterized using a copula based ap-
proach, copula theory allows one to construct a valid joint distribu-
tion from a variety of marginal distributions. According to Sklar’s
Theorem [10], for continuous distributions, the joint probability den-
sity function (pdf) is expressed as

f(x1, . . . , xm) =

(
m∏
i=1

fi(xi)

)
c(F1(x1), . . . , Fm(xm)|Φ) (1)

where c is termed as the copula density and Φ is the copula param-
eter which captures the dependence. Several copula functions are
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defined in the literature, and are constructed to characterize different
types of dependence [10].

To facilitate the formulation of our problem, we introduce basic
concepts in coalitional game theory. LetN = {1, 2, . . . , N} be a set
of fixed players called the grand coaltion. Nonempty subsets of N
are called coalitions. A collection is any family S := {S1, . . . , Sm}
of mutually disjoint coalitions. If additionally ∪mj=1Sj = N , the
collection S is called a partition ofN .

Assuming a comparison relation ., R = {R1, . . . , Rk} . S =
{S1, . . . , Sm} means that the way R partitions A, where A =
∪ki=1Ri = ∪mj=1Sj , is preferred over the way S partitions A. For a
non-transferable (N , v) coalitional game, Pareto order can be used
as a comparison relation .. For a collection R = {R1, . . . , Rk},
the utility of a player j in a coalition Rj ∈ R is denoted by φj(R),
and the Pareto order is defined as follows

R . S ⇐⇒ {φj(R) ≥ φj(S),∀j ∈ R,S} (2)

with at least one strict inequality for a player k.
Apt and Witzel [11] proposed an abstract approach to coalition

formation that focuses on simple merge-and-split rules transforming
partitions of a group of players. Details of coalition formation will
be introduced in detail in Section 3. In this paper, we formulate the
energy constrained collaborative estimation problem as a coalitional
game. We use copula theory to characterize inter-sensor dependence.
By introducing the concept of diversity gain and redundancy loss,
we provide some insights on the effect of dependent observations on
our coalitional game. A merge-and-split algorithm is proposed and
its stability is discussed.

2. PROBLEM FORMULATION

We consider a phenomenon being observed by a set of N sensors
denoted as N = {1, 2, . . . , N}. Each sensor’s observation is Xi =
θ+ni, ∀i = 1, . . . , N , where θ is deterministic but unknown and ni
is zero mean Gaussian distributed noise. The observation noise is not
independent across sensors due to which X = [X1, X2, . . . , XN ] is
dependent. Let Σ denote the covariance matrix of the noise, which
is also the covariance matrix of X.

Σ =


σ2
1 σ1σ2ρ1,2 · · · σ1σNρ1,N

σ2σ1ρ2,1 σ2
2 · · · σ2σNρ2,N

...
...

. . .
...

σNσ1ρN,1 σNσ2ρN,2 · · · σ2
N


where ρi,j ∈ (−1, 1), ∀i 6= j, is the correlation coefficient be-
tween ni and nj which can be determined from the distance be-
tween the two sensors [12]. Each sensor estimates θ using max-
imum likelihood estimation (MLE) based on its own measure-
ments and those from collaborating sensors in the same coalition
S, i.e., θ̂ = maxθ fXS (xS ; θ), where fXS is the joint pdf of
XS = [X1, . . . , X|S|], Xi ∈ S . There are certain restrictions on
the sensors in a coalition: (1) Each sensor can only join one coali-
tion. (2) Once in a coalition, a sensor can request other sensors in
the same coalition for their observations, and it has to transmit its
observation upon request from other sensors.

However, each sensor’s energy is finite and a communication
cost is incurred when it transmits. Let z be the number of requests
initiated by each sensor in the network within a certain time period
T . Then, for a sensor in coalition S, it is requested to transmit
z(|S| − 1) times in T , where |S| is the cardinality of coalition S.

And its energy consumption per unit time is ES = z(|S| − 1)r/T ,
where r is the energy consumption per single transmission per sen-
sor. In order to guarantee sensor’s lifetime, in designing the system,
we put an energy consumption constraint, ES ≤ α, on each sensor.

According to Cramer-Rao Lower Bound (CRLB), var
(
θ̂(X)

)
≥

I(θ)−1 where I(θ) = −E(∂2 log(f(x; θ))/∂θ2), is the FI corre-
sponding to random vector X. We use FI as the criterion of sensor
estimation performance, since for the Gaussian case, CRLB is attain-
able using MLE. For each sensor in the coalition S, the performance
it can achieve in terms of FI is

IS(θ) = −E(
∂2 log(fXS (xS ; θ))

∂θ2
) = 1TΣ−1

S 1 (3)

where ΣS is the covariance matrix corresponding to XS .

Proposition 1. IS(θ) is a nondecreasing function of the cardinality
of S.

Proof. We need to show that IS(θ) ≥ IS′ (θ), for S
′
⊆ S.

IS(θ) = −E
[
∂2

∂θ2
log fXS (xS ; θ)

]
= −E

[
∂2

∂θ2
log fX

S
′ (xS′ ; θ)

]
+

ES′

[
−ES\S′ |S′ [

∂2

∂θ2
log f(xS\S′ |xS′ ; θ)]

]
= IS′ (θ) + ES′

[
IS\S′ |S′ (θ)

]
≥ IS′ (θ) (4)

where S \ S
′

= {i ∈ S|i /∈ S
′
}. The last inequality is because of

the non-negativity of conditional FI.

Remark 1. A grand coalition forms when r = 0. This implies
that all the sensors in the network will collaborate with each other.
Proposition 1 implies that FI will not decrease by including more
sensors in a coalition. Thus, if there is no communication cost, all
the sensors will collaborate for a better estimation performance.

It is clear from Proposition 1 and the definition ofES = z(|S|−
1)r/T that, as |S| increases, both IS(θ) and ES increase. There is a
tradeoff between the estimation performance and energy consump-
tion. Each sensor selfishly aims at maximizing its estimation perfor-
mance, i.e., FI contained in coalition S to which it belongs, subject
to an energy constraint. Let S be a coalition in partition S and let P
be the set of all possible partitions. The problem is

max
S∈P

IS(i∈S)(θ) subject to ES ≤ α, ∀i ∈ N (5)

where IS(i∈S)(θ) represents the FI of sensor i when it is in coali-
tion S. Eq. (5) describes a multi-objective optimization problem in
which coupling exists among sensors. If each sensor solves its opti-
mization problem iteratively by itself, the overall system algorithm
may not converge. An exhaustive approach in which we search over
all possible partitions will render us a computational complexity of
N !/(β!M !M), where β = (αT/zr) + 1,M = N/β (assuming
β,M ∈ Z), even when the observations are independent. When
N is large and dependent observations come into play, the problem
become intractable. So, we use a game theoretical approach. The
difficulty of this problem partially comes from dependence among
observations which will be explained in detail in the next section.
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3. COLLABORATIVE DISTRIBUTED ESTIMATION

3.1. Diversity gain & Redundancy loss

To analyze the effect of inter-sensor dependence on the FI in coali-
tion S, we express the joint pdf of random variables in coalition S in
terms of the marginal pdf and copula density function cs, as in (1).

By copula theory, when log cS(·; θ,Φ) is twice differentiable
with respect to θ, IS(θ), the Fisher information contained in XS can
be written as

IS(θ) = −E

∂2 log{
(∏|S|

i=1 fi(xi; θ)
)
cS(·; θ,Φ)}

∂θ2


=

∑
i∈S

Ii(θ)− E
[
∂2 log cS(·; θ,Φ)

∂θ2

]
=

∑
i∈S

Ii(θ) + IcS (θ) (6)

Thus, FI of a random vector can be written as the summation of
FI corresponding to each random variable and IcS , the generalized
Fisher information (GFI) of the copula density cS . We name IcS
the generalized FI because it may not satisfy the non-negativity of
FI. Proposition 2 provides us some insights into the properties of
the GFI of bivariate Gaussian pdf. A bivariate Gaussian pdf can be
written as a product of Gaussian marginals and a Gaussian copula.

Proposition 2. [X,Y ]T is a bivariate Gaussian distributed vector,
[X,Y ]T ∼ N(µ,ΣXY ), where µ = [µX(θ), µY (θ)]T

ΣXY =

(
σ2
X σXσY ρXY

σY σXρYX σ2
Y

)
and θ is the parameter to be estimated (Without loss of generality,

let
∣∣∣∣σXσY µ

′
Y (θ)

µ
′
X

(θ)

∣∣∣∣ ≤ 1, where the derivative is taken with respect to θ)

then we have: (1) IcXY , the GFI of copula cXY , is a convex func-

tion of ρXY and minρXY IcXY = −µ
′2
Y (θ)

σ2
Y

is reached at ρXY =

σX
σY

µ
′
Y (θ)

µ
′
X

(θ)
; (2) IcXY ≤ 0 for ρXY between 0 and ρB(µ,ΣXY ),

where ρB(µ,ΣXY ) =
2µ
′
X (θ)µ

′
Y (θ)σXσY

µ
′2
X

(θ)σ2
Y

+µ
′2
Y

(θ)σ2
X

.

Proof.

IcXY =
−1

σ2
Xσ

2
Y (1− ρ2XY )

{2ρXY µ
′
X(θ)µ

′
Y (θ)σXσY

−ρ2XY (µ
′2
X(θ)σ2

Y + µ
′2
Y (θ)σ2

X)} (7)

It can be shown that
∂2IcXY

∂ρ2
XY

≥ 0, ∀ρXY ∈ (−1, 1). By setting

∂IcXY
∂ρXY

= 0, we get ρ∗ = σX
σY

µ
′
Y (θ)

µ
′
X

(θ)
and I∗cXY

= −µ
′2
Y (θ)

σ2
Y

when∣∣∣∣σXσY µ
′
Y (θ)

µ
′
X

(θ)

∣∣∣∣ ≤ 1.

By setting (7) equal to zero, we get two solutions: ρ1 = 0

and ρ2 =
2µ
′
X (θ)µ

′
Y (θ)σXσY

µ
′2
X

(θ)σ2
Y

+µY (θ)
′2
σ2
X

. Combined with the convex-

ity of the function, it can be concluded that IcXY ≤ 0 when
ρXY ∈ [min{0, ρB(µ,ΣXY )},max{0, ρB(µ,ΣXY )}]. Also note
that when ρXY = 0, IcXY = 0, meaning that FI is solely the

summation of individual FIs of X and Y ; when ρXY = σX
σY

µ
′
Y (θ)

µ
′
X

(θ)
,

IcXY is just the smaller individual FI of the two with a minus
sign.

Remark 2. For our problem formulation, a sensor i prefers to co-
operate with sensor j with a positive IcXiXj

than sensor k with a
negative IcXiXk

, when sensor i and j have identical individual per-
formance. This is because to sensor i, sensor j is more “valuable”
than sensor k in the sense that some of sensor k’s information is
redundant for sensor i.

Definition 1. If IcXY < 0, we define -IcXY to be pairwise redun-
dancy loss denoted as IrlXY , otherwise we define IcXY to be pair-
wise diversity gain denoted as IdgXY .

The definitions of diversity gain and redundancy loss allow for
a better characterization of the different roles pairwise inter-sensor
dependence may play. General properties of the GFI of multivariate
Gaussian copula may be analyzed using vines which is a graphical
method of constructing multivariate copulas proposed by Kurowicka
and Cooke [13]. The joint pdf of N random variables expressed in
terms of a D-vine decomposition is given by:

N∏
i=1

f(xi)

N−1∏
j=1

N−j∏
k=1

cj,j+k|j+1,...,j+k−1

(F (xj |j + 1, . . . , j + k − 1), F (xj+k|j + 1, . . . , j + k − 1)) (8)

Thus, a multivariate copula is decomposed into the product of
bivariate conditional copulas. Therefore, IcS , the corresponding GFI
of the copula in any coalition S can by written as:

IcS =

|S|−1∑
j=1

|S|−j∑
k=1

Icj,j+k|j+1,...,j+k−1

=

|S|−1∑
j=1

|S|−j∑
k=1

Idgj,j+k|j+1,...,j+k−1
1[Icj,j+k|j+1,...,j+k−1

≥0]

−
|S|−1∑
j=1

|S|−j∑
k=1

Irlj,j+k|j+1,...,j+k−1
1[Icj,j+k|j+1,...,j+k−1

<0]

= IdgS − IrlS (9)

IdgS represents the diversity gain in the coalition S and IrlS rep-
resents the amount of redundant information included in coalition
S. By noting that IdgS and IrlS are nonnegative and nondecreasing
function of |S|, we view IdgS together with

∑
i∈S Ii(θ) as the gain

of forming S, and IrlS together with ES as the cost.

3.2. Game Formulation and Properties

We propose a (N , v) coalitional game to model our collaborative
estimation framework, where N is the set of players (the sensors)
and v is the utility function of a coalition S. v(S) is defined as an
increasing function of the gain

[∑
i∈S Ii(θ) + IdgS

]
and a decreas-

ing function of the cost IrlS , ES :

v(S) =

[∑
i∈S

Ii(θ) + IdgS

]
− [IrlS + C(ES)] (10)

C(ES) reflects the energy cost of each sensor in the coalition
S. There are certain properties that a well designed cost function
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C(ES) should satisfy; here we use the logarithmic barrier penalty
function given by [14]

C(ES) =

{
−1/t · log(1− ES

α
) if ES < α

+∞ otherwise
(11)

where α is the constraint on ES , and t is a control parameter.

Proposition 3. In the proposed game, the utility is non-transferable.
That is the utility for each of the sensor in coalition S is equal to the
utility of the coalition, i.e., v(S) = φi(S),∀i ∈ S, where φi(S)
denotes the utility of sensor i when it belongs to a coalition S.

Now, we have a non-transferable (N , v) coalitional game and a
distributed algorithm for forming coalitions among sensors will be
derived.

3.3. Coalition formation algorithm

For autonomous coalition formation in wireless sensor networks, we
propose a distributed algorithm based on two simple rules denoted
as merge and split [11] that allow us to modify a partition S of the
setN .

Merge Rule: Merge any set of coalitions {S1, . . . , Sm}, where
{∪mj=1Sj}.{S1, . . . , Sm}, therefore, {S1, . . . , Sm} → {∪mj=1Sj}.

Split Rule: Split any coalition {∪mj=1Sj}, where {S1, . . . , Sm}.
{∪mj=1Sj}, thus {∪mj=1Sj} → {S1, . . . , Sm}.

For the proposed collaborative estimation game (N , v), we
construct a coalition formation algorithm based on merge-and-split
rules, the result of which is a network partition composed of disjoint
independent coalitions of sensors.

To collaboratively estimate the parameter of interest, after the
sensors make their own observations, they seek to form coali-
tions through merge-and-split. Let the initial partition be S =
{S1, . . . , Sm}. Then,successive merge-and-split processes will go
on until the iterations terminate.

repeat
R = Merge(S): coalitions in S merge according to the merge

rule, until no further merge occurs
S = Split(R): coalitions in R split according to the split rule,

until no further split occurs.
until No merge or split occurs

The stability of this resulting network structure can be investigated
using the concept of a defection function D [9, 11]. A partition T =
{T1, . . . , Tm} of N is Dhp-stable, if no players in T are interested
in leaving T through merge-and-split to form other partitions in N .
A partition T is Dc-stable, if no players in T are interested in leaving
T through any operation to form other collections inN [9].

Dhp-stable can be thought of as a state of equilibrium where no
coalitions have an incentive to pursue coalition formation through
merge or split. It has been proved in [15] that a partition is Dhp-
stable if and only if it is the outcome of iterating the merge-and-
split rules. Thus, for the proposed (N , v) collaborative distributed
estimation game, the proposed merge-and-split algorithm converges
to a Dhp-stable partition.

It is known that if T is Dc-stable, then T is the outcome of ev-
ery iteration of the merge-and-split rules and it is a unique Dc-stable
partition [11]. Thus, if a Dc-stable partition exists for our proposed
game, then the Dhp-stable partition that our algorithm converges to,
is also the optimal Dc-stable partition. Nonetheless, a Dc-stable par-
tition dose not always exits [15]. A Dc-stable partition is not guar-
anteed for our collaborative game and its existence depends on the
covariance matrix and the parameters of the cost function in (11).
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Fig. 1. Individual sensor payoffs keep increasing with each merge or
split operation attempt until a Dhp-stable partition is reached

4. SIMULATION RESULTS

We consider a wireless sensor network with eight sensors, i.e.,
N = {1, . . . , 8}. The covariance matrix of the eight random vari-
ables is such that X1, X3, X6 are independent of each other, while
X2, X4, X5 are independent of each other.

We set α such that the largest coalition size is four. We set the
initial partition to beF = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}.
By applying the merge-and-split algorithm we proposed in the pre-
vious section, the final partition is F = {{1, 3, 6, 7}, {2, 4, 5, 8}},
as shown in Figure 1.

By the utility function (10), sensors that tend to increase the di-
versity gain are more likely to be grouped together; on the other
hand, sensors that tend to be redundant to each other are more likely
to be placed in different coalitions. For X1 and X2, whose corre-
lation coefficient is ρ = 0.3, assigning them in the same coalition
will incur a redundancy loss term. The final partition avoided redun-
dancy loss by putting 1, 3, 6 in one coalition and 2, 4, 5 in another.
Note that it may not always be the case that independent observations
are assigned to the same coalition, since it may happen that some
inter-sensor dependence may add to diversity gain, under such cir-
cumstances dependent sensors are preferred than independent ones.
For the overall system performance, the average payoff of the sensor
network, which is defined as 1/N

∑
S∈S |S|IS(θ), also increases

as shown in Figure 2. Sensor’s estimation performance improves
by collaborating with others in the network, while communication
efficiency constraint is satisfied. A more detailed study of these con-
cepts will continue.
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