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ABSTRACT

In this paper, the problem of robust training sequence design
for multiple-input single-output (MISO) channel estimation is
investigated. The mean-squared error (MSE) of the channel
estimates is considered as a performance criterion to design
an optimized training sequence which is a function of channel
covariance matrix. In practice, the channel covariance matrix
is not perfectly known at the transmitter side. Our goal is
to take such imperfection into account and propose a robust
design following the worst-case philosophy which results in
finding the optimal training sequences for the least favorable
channel covariance matrix within a deterministic uncertainty
set. In this work, we address the formulated minimax de-
sign problem under different assumptions of the uncertainty
set, and we show that for a unitarily-invariant uncertainty set,
the optimally robust training sequence shares its eigenvectors
with the channel covariance matrix. Furthermore, we give
analytical closed-form solutions for robust training sequences
if the spectral norm or nuclear norm are considered as con-
straints to bound the existing uncertainty.

Index Terms— Robust training sequences, worst-case ro-
bustness, unitarily-invariant uncertainty set, imperfect covari-
ance, MIMO channel estimation.

1. INTRODUCTION

A crucial step throughout the design of multiple array com-
munication systems is the acquisition of channel state infor-
mation (CSI). It has been shown in [1] that the full advantage
of multiple-input multiple-output (MIMO) communication
systems (e.g., throughput, capacity, etc.) is attained where
a perfect knowledge of CSI is provided at the transmitter.
There are many studies in which the authors tried to over-
come the challenge of having imperfect CSI at the transmitter
by proposing robust schemes or optimal designs, e.g., [2–8].
One approach to obtain channel coefficients is sending known
training sequences, then, using an estimator at the receiver,
the channel coefficients can be estimated given the observed
received signal. Now, the design challenge is to optimize
training sequences with respect to minimizing a distortion
measure, e.g. the mean squared error (MSE) used in this
paper, under a training power budget constraint. The MSE as

a performance criterion is, itself, a function of the channel co-
variance matrix. The authors in [9–12] have derived optimal
training sequences assuming certain statistical structures to
model the covariance matrix of correlated MIMO channels.
Now, the question is that how the MSE performance will
change if the true channel covariance matrix is not necessar-
ily equivalent to the nominal one (which is known a priori).
Note that this is often the case, since, in practice, the channel
covariance matrix itself has to be estimated and possibly also
quantized and fed back to the transmitter, leading to an erro-
neous channel covariance matrix. In this paper, our goal is to
take existing uncertainty in the channel covariance matrix into
account, and to provide training sequences which are robust
against such imperfections following the worst-case robust
philosophy. We formulate a minimax robust training design
problem by which we optimize the worst-case performance.

The technique of robust superimposed training sequences
for MIMO channels has been brought up in [13] where ro-
bust sequences are obtained numerically using an iterative
algorithm for the case of uncorrelated noise in the system.
In [14], the authors have generalized this method in order
to find robust multiplexed training sequences for the colored
noise scenario. In both studies [13] and [14], the authors have
considered the Frobenius norm constraint to model the uncer-
tainty. In this paper, concentrating on multiple-input single-
output (MISO) channels and uncorrelated noise, we widen
the robust analysis for the training sequence design problem
by considering different uncertainty models, and provide both
structural results as well as closed form solutions, for specific
special cases.

In robust designs where the uncertain parameter vec-
tor/matrix represents amplitude values, it often makes sense
to use an Euclidean/Frobenius norm to express the uncer-
tainty region, related to the power of the error. However, in
the current application the uncertainty lies in the covariance
matrix, where it sometimes can be more reasonable to express
the uncertainty as a linear function of the eigenvalue devia-
tions. One justification could be that this deviation directly
relates to uncertainties in quadratic forms involving the uncer-
tain covariance matrix. Therefore, we provide some insights
into robustness first considering a general convex assumption,
then, we focus on the uncertainty regions described in terms
of the spectral norm and the nuclear norm of the error in the
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channel covariance matrix.
We start from the generic assumption of convex unitarily-

invariant uncertainty sets [8] where we show that the robust
design problem is convex and can be addressed efficiently,
then we prove that diagonal structure is the optimal one, i.e.,
the optimally robust training sequence matrix is diagonalized
by the eigenvectors of the nominal channel covariance matrix.
This result reduces the complexity by allowing us to simplify
a complex matrix-variable minimax problem to a real vector-
variable power allocation problem. We proceed our analysis
by deriving closed-form solutions to the minimax power al-
location problem under different norm constraints used to de-
termine the uncertainty sets, e.g., spectral norm and nuclear
norm.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

We consider a MISO communication system with nT anten-
nas at the transmitter side and single antenna at the receiver
side. The received signal is presented as

y = Ph+ n, (1)

where P ∈ CB×nT is the training matrix which comprises
training sequences as its column at each channel use. B rep-
resents the length of the training sequence, or in other words,
the number of channel uses, and B ≥ nT . y ∈ CB×1 is the
received signal and n ∈ CB×1 is a white Gaussian noise vec-
tor with E{nnH} = σ2

nIB where E{·} and (·)H denote the
expectation operator and Hermitian of a vector (or matrix), re-
spectively. Moreover, h ∈ CnT×1 is the MISO channel with
E{hhH} = R ∈ CnT×nT . Both the MISO channel h and
the noise n are distributed according to circularly symmet-
ric complex Gaussian distribution, i.e., h ∼ CN (0,R) and
n ∼ CN (0, σ2

nIB), respectively. We assume that the MISO
channel covariance matrix is known at the receiver side. Then
using the MMSE estimator, the estimate of the instantaneous
channel coefficients vector ĥmmse is given by [15, Chapter
10]

ĥmmse = [R−1 +
1

σ2
n

PHP]−1 1

σ2
n

PHy. (2)

In order to optimize the training sequences under power con-
straint, a common method used in existing works such as
[9–12] is to minimize the MSE with respect to the total power
budget constraint PT

min
P

Tr

{[
R−1 +

1

σ2
n

PHP

]−1
}

s.t. Tr{PHP} ≤ PT .

(3)

This objective is a function of the channel covariance ma-
trix R which itself should be estimated and/or quantized and
fed back to the transmitter, and as a result, subject to errors.

Following the worst-case robust optimization philosophy, we
take this error into account formulating the robust design as
a minimax optimization problem. Indeed, we find the train-
ing sequences which minimize the MSE for the least favor-
able covariance matrix within a deterministic uncertainty set.
This set is defined as a neighborhood of the nominal chan-
nel covariance matrix R̂ which is bounded by a convex con-
straint on the Hermitian mismatch matrix E. In other words,
we assume that the true covariance matrix R is modelled
as R = R̂+E where E ∈ E and E is a convex unitarily-
invariant uncertainty set, i.e., if E ∈ E , then UEUH ∈ E for
any arbitrary unitary matrix U. This category of uncertainty
sets is general enough to include most common sets used in
the robust study literature, e.g., the Schatten p-norms which
cover spectral norm, nuclear norm and also Frobenius norm
for certain values of p. Now, let us define W = 1

σ2
n
PHP ∈

W where W , {W | W ≽ 0,Tr{W} ≤ PT

σ2
n
}. Now, the

robust design problem can be formulated as

min
W∈W

max
E∈E

Tr

{[
(R̂+E)−1 +W

]−1
}
. (4)

3. ROBUST TRAINING SEQUENCES FOR THE
MISO CHANNEL

In this section, we study and analyze problem (4) whose so-
lution gives the robust training sequences for the MISO chan-
nel. This problem is convex since the objective function, due
to the convexity of Tr(·)−1 in its argument, is a convex func-
tion in W and maximization preserve convexity. Then, the
outer minimization problem becomes convex under the con-
vex constraint W ∈ W , and can be solved numerically for
example using the extended barrier method described in [16].
Note that recalling the assumption B ≥ nT , the robust train-
ing sequences P⋆ can be extracted out from W⋆, e.g., using
Cholesky factorization. In the following, we focus on the con-
vex unitarily-invariant set and investigate the optimal struc-
ture and optimal power allocation for problem (4).

3.1. Optimal structure: Diagonalization

Now, consider the eigenvalue decomposition (EVD) of R̂,
E and W as URΛRUH

R , UEΛEU
H
E and UWΛWUH

W, re-
spectively, then we have the following theorem, whose proof,
due to the space limitation, is omitted. The detailed proof is
given in [17].

Theorem 1. For MISO channel h, the solution to the min-
imax robust design problem (4) W⋆ is given as W⋆ =
UH

W⋆ΛW⋆UW⋆ where UW⋆ = UR and ΛW⋆ is the solu-
tion to the following minimax power allocation problem

min
ΛW∈W

max
ΛE∈E

Tr
{[

(ΛR +ΛE)
−1 +ΛW

]−1
}
. (5)
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In Theorem 1, it is proved that the optimally robust solu-
tion is obtained when the variables W and E are diagonalized
by the eigenvectors of the nominal covariance matrix, i.e.,
UW⋆ = UE⋆ = UR implying that the diagonal structure is
the optimal structure so that the optimal direction is the eigen-
direction of the nominal covariance matrix R̂. Following the
same argument mentioned earlier in this section, we conclude
that this power allocation problem also is convex and can be
addressed numerically for any convex unitarily-invariant set.
In the next subsection, we take a deeper analytic look into the
problem (5) by considering different vector norm constraints
to describe the unitarily-invariant uncertainty set.

3.2. Optimal power allocation for different uncertainty
models

In this subsection, we provide closed-form solutions for the
power allocation problem (5) considering two specific un-
certainty models expressed using the spectral norm and nu-
clear norm, respectively. These analytical solutions give in-
sights regarding the dependency of robust training sequences
on the parameters of the MISO system as well as the aspects
of uncertainty sets. Let λAi for i = 1, ..., n and λmax(A)
represent each eigenvalue and the largest eigenvalue of the
n × n matrix A, respectively, also diag(a) is a diagonal ma-
trix which has the vector a as its main diagonal elements.

3.2.1. Spectral norm

We assume that ΛE ∈ Es where Es , {ΛE | ∥ΛE∥2 ,
λmax(ΛE) ≤ ϵ}.

Theorem 2. Let the uncertainty set E = Es. Then, the solu-
tion to the power allocation problem (5) is given by

ΛW⋆ = diag(λW⋆
i
) = diag(max{k − 1

λRi + ϵ
, 0}) (6)

for i = 1, 2, ..., nT , where k =
PT+σ2

nTr{(ΛR+ϵInT
)−1}

σ2
nnT

.

Proof: The proof is based on, first, using the matrix inver-
sion lemma and exploiting the fact that ΛE ≼ ϵInT

to turn
the inner maximization problem into a minimization problem
for which E = ϵInT

is the solution, second, inserting this so-
lution back to the objective function, the outer minimization
can be, equivalently, rewritten as the following minimization
problem

min
λWi

nT∑
i=1

λRi + ϵ

λWi(λRi + ϵ) + 1

s.t.
nT∑
i=1

λWi ≤
PT

σ2
n

, λWi ≥ 0,

which can be solved by applying Karush-Kuhn-Tucker (KKT)
conditions since we have a convex problem (the objective
function is convex with respect to λWi). Then, the robust
power allocation for i = 1, ..., nT is given by

λW⋆
i
= max

{
1

nT

[
PT

σ2
n

+

nT∑
i=1

(
1

λRi + ϵ
)

]
− 1

λRi + ϵ
, 0

}
.

(7)

3.2.2. Nuclear norm

We assume that ΛE ∈ En where En , {ΛE | ∥ΛE∥∗ ,
Tr{(ΛH

EΛE)
1
2 } ≤ ϵ}.

Theorem 3. Let the uncertainty set E = En. Then, for ϵ ≥
ϵ′ , λmax(R̂) −

∑nT

i=1 λRi , the solution to the power allo-
cation problem (5) is given as

ΛW⋆ =
PT

σ2
nnT

InT
. (8)

Proof: Consider first solving (5) under the alternative con-
straint Et , {ΛE | Tr{ΛE} ≤ ϵ}. It can be shown that the
solution is given by

(ΛW⋆ ,ΛE⋆) =

(
PT

σ2
nnT

InT
,
1

nT

(
ϵ+

nT∑
i=1

λRi

)
InT

−ΛR

)
.

For detailed proof, refer to [17]. Note that if ∀λEi ≥ 0, i =
1, ..., nT , the two uncertainty sets En and Et are equivalent. It
can be easily shown that if ϵ ≥ ϵ′ , λmax(R̂) −

∑nT

i=1 λRi ,
then λEi ≥ 0. Therefore, it is concluded that for ϵ ≥ ϵ′,
we have found the solution to the nuclear norm problem and
obtained the optimal power allocation which is equivalent to
(8).

4. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed
robust training sequence design. We consider a 4 × 1 MISO
channel where the nominal covariance matrix R̂ is generated
according to the exponential model [18] with the correlation
coefficient ρ.

In Fig.1, we have plotted the cumulative distribution func-
tion (CDF) of the worst-case MSE for the proposed robust
design and non-robust scheme. We have solved (5) under
the Frobenius norm constraint, i.e., E ∈ Ef where Ef ,
{E | ∥E∥F , (Tr{EHE}) 1

2 ≤ ϵ} to obtain the worst-case
MSE values for robust design. We have chosen the Frobenius
norm constraint here due to its differentiability which allows
us to use the extended barrier method. For the non-robust de-
sign, the outer minimization in (4) is solved by only consider-
ing the nominal covariance matrix R̂, and then the resulting
solution is inserted back to the objective where we solve the
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Fig. 1. CDF comparison of the robust and non-robust training
sequence design for arbitrary correlated MISO channel.

inner maximization to find the worst covariance matrix. A
relative uncertainty parameter s ∈ [0, 1] used in Fig.1 is de-
fined as s , ϵ/∥R̂∥F . The curves in Fig.1 are plotted using
1000 Monte Carlo simulations where the magnitude of the
correlation coefficient |ρ| is drawn according to the uniform
distribution in (0, 1). We also assume that SNR , PT

σ2
n

is set
to 5 dB. As can be seen from this figure, the worst-case MSE
value variations are much larger for the non-robust design
as compared to the robust design. This observation implies
that we have met our design purpose in the sense of finding
training sequences which provide robust performance against
perturbed covariance matrix. Also, robust deign outperforms
non-robust one in terms of the worst-case performance since
the probability of having the worst-case MSE smaller than a
certain value is higher for the curves denoting the robust de-
sign.

In Fig.2, we compare three different training design
schemes under the nuclear norm constraint where the plot-
ted results are based on a single channel realization. Here,
ρ = 0.3e−0.83jπ . As it would be expected, the robust ap-
proach outperforms the non-robust one and for ϵ ≥ ϵ′ (de-
fined in Theorem 3), the robust one approaches the equal
power allocation scheme which can be understood according
to Theorem 3.

5. CONCLUSION

A robust scheme has been investigated for the problem of op-
timal training sequence design for correlated MISO channel
estimation. Existing uncertainty in the channel covariance
matrix has been taken into account using deterministic uncer-
tainty modelling, in general, where our goal was to optimize
the training sequences under total power budget constraint.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.5

4

4.5

5

5.5

6

Uncertainty parameter (s)

W
or

st
−

ca
se

 M
S

E
 (

dB
)

 

 

Non−robust design
Equal power design
Robust design

s = 0.57

Fig. 2. Worst-case MSE comparison of three different train-
ing sequence designs for different sizes of the nuclear norm
uncertainty set, where s = ϵ/∥R̂∥∗.

We have formulated this design problem as a minimax opti-
mization problem by following the worst-case robust philos-
ophy. Then, focusing on the convex unitarily-invariant uncer-
tainty sets, we have proved that the diagonalization is the op-
timal strategy which provides robust training sequences and
simplifies the problem to a power allocation problem. We
have provided closed-form solutions as optimal power allo-
cations under different uncertainty models which have been
defined according to different norms. Numerical examples
have been drawn to evaluate the performance of the proposed
strategy and to show that our design goal, i.e., providing ro-
bustness against channel covariance mismatch, has been sat-
isfied.
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