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ABSTRACT

Pseudo-noise (PN) masking is regarded as an effective means

to combat data eavesdropping (for example in military-grade

communications or positioning systems). At the same time,

PN-masked data transmissions are considered vulnerable to

interference/jamming due to lack of practical interference

suppression solutions. In this work, (i) we derive an effi-

cient minimum-mean-square-error (MMSE) optimal linear

receiver of PN-masked data and (ii) develop an auxiliary-

vector (AV) MMSE adaptive filter estimator with state-of-

the-art small-sample-support estimation performance. Simu-

lation studies included in this paper illustrate the effectiveness

of the theoretical developments.

Index Terms— Adaptive filtering, auxiliary-vector fil-

tering, global-positioning systems, interference suppression,

pseudo-noise masking, secure communications.

1. INTRODUCTION

Pseudo-noise (PN) masking is the data-hiding technique

by which information symbols are masked (modulated) by a

noise-like –yet deterministic– sequence, generated by a finite-

state machine with a period that far exceeds the transmission

data rate [1],[2]. The mask can be “stripped-off” and the

data can be retrieved by a perfectly synchronized replica of

the PN-generator by means of mask-matched-filtering. PN-

masking applications can be found in the global navigation

satellite systems (GNSS) [3], long-coded (aperiodic) spread-

spectrum communication links [4], or even watermarking

procedures for security tracing [5].

At the same time, there has been a long-standing de-

bate on the vulnerability of PN-masked data to interfer-

ence/jamming, stemming, arguably, from suggestions that

linear minimum-mean-square-error (MMSE) interference

suppression is either infeasible (no symbol-period-invariant

MMSE filter exists) [6],[7] or “has a computational com-

plexity per symbol interval proportional to the third power of

the processing gain” [8]. On this basis, PN-masking is com-

monly thought as being non-amenable to MMSE filtering

and a conventional mask-matched-filter receiver is employed

instead.
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In this paper, our contribution is twofold. First, arguably

contrary to common belief, we establish that efficient, low-

complexity, true interference-suppressive MMSE reception of

PN-masked data is, in fact, possible and requires only one co-

variance matrix inversion for the detection of the whole PN-

masked symbol stream. Second, we derive for the first time an

auxiliary-vector (AV) filter estimation algorithm for the pro-

tection of PN-masked data against highly non-stationary jam-

ming via short-data-record adaptation.

2. SIGNAL MODEL AND NOTATION

We consider a PN-masked symbol stream transmitted over a

quasi-static multipath fading channel in the presence of com-

plex zero-mean colored interference (possibly malevolent).

For simplicity in the presentation and without loss of gen-

erality, the information symbols and mask are to be both bi-

nary antipodal. We denote by m the modulating PN-sequence

of some large length N and partition m into K segments

m1,m2, · · · ,mK of length L = N/K each, to be used as

mask to K corresponding information bits. Then, for the kth

information bit bk ∈ {±1} the transmitted signal vector is

sk =
√
pubkmk ∈ R

L×1, k = 1, · · · ,K, (1)

where mk ∈ {± 1√
L
}L denotes the kth normalized mask seg-

ment and pu > 0 is the total transmitted signal energy per in-

formation bit. If the channel exhibits q resolvable paths within

the time scale of mask symbols, then the kth received signal

has the following (L+ q − 1)× 1 vector representation

rk =
√
pubkHmk + ik +

√
pjj+ n ∈ C

(L+q−1)×1 (2)

where H ∈ C
(L+q−1)×L is the multipath fading channel

matrix taken to be invariant over the transmission of the K
information bits, ik identifies comprehensively the multipath-

induced inter-symbol interference (ISI), j is a complex zero-

mean colored jamming signal with covariance matrix Rj ,

and n is complex zero-mean additive white Gaussian noise

(AWGN) with covariance matrix Rn = σ2IL+q−1 for some

σ2 > 0 and IL+q−1 the size-(L+q−1) identity matrix. With

no loss of theoretical generality, we treat Rj as a positive-

semidefinite matrix of rank D ≤ L+ q− 1 and unitary trace,

so that the overall power of the jamming signal equals pj > 0.
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3. MMSE RECEPTION OF PN-MASKED SIGNALS

The ideal MMSE filter for the recovery of the kth information

bit is

wk,MMSE =
√
puR

−1
k Hmk (3)

where Rk is the input autocorrelation matrix of rk defined

as Rk
�
= E

{
rkr

H
k

}
with H being the conjugate-transpose

operator and E{·} denoting statistical expectation taken with

respect to bk, ik, j, n in (2), but not mk which is treated as

fixed deterministic. If we denote the autocorrelation matrix

of the compound disturbance to signal sk (ISI, jammer, and

AWGN) Rd,k
�
= E

{(
ik +

√
pjj+ n

) (
ik +

√
pjj+ n

)H}
,

then if the number of resolvable paths is much less than

the length of the bit mask (i.e., q � L) we can safely ig-

nore the effects of ISI [9] and approximate Rd,k ≈ Rd
�
=

E{(√pjj+ n
) (√

pjj+ n
)H}, so that the input autocorrela-

tion matrix becomes

Rk = puHmkm
H
k HH +Rd. (4)

Certainly, Rk in (4) changes on an information bit in-

terval basis due to the mask and the MMSE filter in (3) ap-

pears at first sight to require an (L + q − 1) × (L + q −
1) matrix inversion per bit recovery as presented in [8]. In

the following, we establish that this is not, in fact, neces-

sary and a single matrix inversion – that of Rd – is sufficient

for MMSE filtering of the whole masked bit stream. We be-

gin with the comment that under post-filtering bit detection

b̂k = sign
(
Re

{
wH

k,MMSErk

})
(sign(·) is the sign opera-

tor and Re{·} extracts the real part of a complex number),

any scaled version swk,MMSE, s > 0, of wk,MMSE in (3) is

an equivalent filter. Then, using the Matrix Inversion Lemma

(also known as Woodbury’s Identity [10]) on R−1
k , we obtain

R−1
k = R−1

d − puR
−1
d Hmkm

H
k HHR−1

d

1 + pumH
k HHR−1

d Hmk

. (5)

Substituting (5) to (3), we show that

wk,MMSE ≡ R−1
d Hmk. (6)

Thus, interference-suppressive MMSE filtering is, in fact,

feasible for PN-masked data with a single matrix inversion for

the whole data sequence k = 1, 2, · · · ,K, and one multipli-

cation per data symbol of the form (R−1
d H)mk.

4. SHORT-DATA-RECORD ADAPTIVE MMSE
RECEPTION OF PN-MASKED SIGNALS

We consider now Rd being estimated over a finite number of

received signal snapshots, say M , recorded during a silent pe-

riod of the information-bearing signal component sk. If, for

example, the jamming signal is non-stationary and its second-

order statistics remain constant only for a short coherence pe-

riod of, say, T information bit intervals, then we must keep

M < T and the need for effective MMSE filter estimation

with small sample support becomes pronounced.

Conventionally, Rd is sample-average estimated [11],[12]

over the M silent (signal-absent) snapshots, say y1, y2, · · · ,

yM , by

R̂d(M) =
1

M

M∑
m=1

ymyH
m. (7)

If ci, i = 1, 2, · · · , T −M , are the transmission masks used

within the coherence period of R̂d(M) and L+q−1 ≤ M ≤
T − 1, then [R̂N (M)]−1 exists with probability 1 and

ŵi,SMI(M) = [R̂d(M)]−1Hci (8)

is the well-known, widely used, unbiased signal-absent

sample-matrix-inversion (SMI) estimator on the MMSE fil-

ter1. On the other hand, if the interferer changes second-

order statistics fast enough to have T < L + q forcing

the receiver adaptation sample size to M < L + q − 1,

then R̂d(M) in (7) is singular and ŵi,SMI(M) in (8) can-

not be defined. For this case, a simple and popular ap-

proach is the diagonally loaded signal-absent SMI filter

estimator ŵi,DL-SMI(β,M) = [D̂d(β,M)]−1Hci, where

D̂d(β,M)
�
= βIL+d−1 + R̂d(M) and β is the diagonal load-

ing factor to be appropriately (heuristically) chosen [13]. It

is worth noting at this point that supervised recursive-least-

squares (RLS) and least-mean-square (LMS) filter estimators

do not apply herein due to the nature of the input autocor-

relation matrix that changes on an information bit interval

basis [14].

In this paper, for the first time in the literature, we de-

rive a modified auxiliary-vector (AV) filtering algorithm [15]-

[22] for effective adaptive PN-masked signal protection under

small sample support. For each mask segment ci, our algo-

rithm produces a sequence of filter estimators that converges

to ŵi,SMI(M) when the latter exists. Most importantly, early

elements in the sequence are shown to offer state-of-the-art

mean-square filter estimation error (and post-filtering SINR).

In the rest of the section, we derive analytically the AV filter

estimator sequence for any generated mask segment ci.
Denote by P⊥

i the orthogonal projector onto the nullspace

of the signal vector direction (channel-processed mask seg-

ment) vi = Hci, that is

P⊥
i

�
= IL+d−1 − ‖vi‖−2viv

H
i . (9)

Assume data record size 1 ≤ M ≤ T − 1 being available

at the receiver for the computation of R̂d(M). We begin

1The SMI estimator is unbiased for multivariate elliptically contoured in-

put distributions, i.e. E{ŵi,SMI(M)} = wi,MMSE = R−1
d Hci [11].
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the algorithmic developments by initializing our estimator se-

quence to the conventional (scaled) matched filter

ŵi,0 = wi,MF = ‖vi‖−2vi. (10)

Thereafter, following the theory developed in [15], each new

filter estimate in the sequence is produced by incorporating

to the previous filter estimate a weighted, orthogonal to vi

auxiliary-vector component. Specifically, the inductive step

of the generated sequence is defined as

ŵi,n = ŵi,n−1 − μi,ngi,n, n = 1, 2, · · · , (11)

where gi,n ∈ C
L, μi,n ∈ C, and gH

i,nvi = 0. Considering for

a moment the nth auxiliary vector gi,n to be arbitrarily fixed,

we will choose μi,n to minimize the (estimated) variance of

the output of ŵi,n

μi,n = argmin
μ∈C

ŵH
i,nR̂d(M)ŵi,n, (12)

which has solution

μi,n =
gH
i,nR̂d(M)ŵi,n−1

gH
i,nR̂d(M)gi,n

. (13)

Next, we turn to the auxiliary vector gi,n and choose the vec-

tor that maximizes the magnitude of the (estimated) cross-

correlation between the disturbance filtered by ŵi,n−1 and by

gi,n, while remaining orthogonal to the signal direction of in-

terest vi. Mathematically stated,

gi,n = arg max
g∈CL

|ŵH
i,n−1R̂d(M)g|,

subject to gHvi = 0. (14)

The solution to (14), derived through conventional Lagrange

multipliers, is given by

gi,n = P⊥
i R̂d(M)ŵi,n−1. (15)

Following the initialization of the filter sequence and the fact

that gi,n lies in the nullspace of vi, we observe that

ŵH
i,nvi = 1 ∀n = 0, 1, 2, · · · . (16)

For clarity in presentation, the algorithm developed above is

summarized in Fig. 1.

Convergence analysis is summarized in the form of the

Lemmas and Theorems below. Proofs are omitted due to lack

of space.

Lemma 1 For any mask segment i = 1, 2, · · · , T − M , the
sequence of auxiliary-vector weights {μi,n}, n = 1, 2, · · · ,
defined by (13) is real-valued, positive, and bounded as fol-
lows

0 <
1

λ1
≤ μi,n ≤ 1

λP
, n = 1, 2, · · · , (17)

where λ1 and λP are the maximum and minimum, respec-
tively, non-zero eigenvalues of R̂d(M).

Input: H, c1, c2, . . . , cT−M , R̂d(M).

for i = 1, 2, · · · , T −M do

Initialization:

vi := Hci;

ŵi,0 := ‖vi‖−2vi;

P⊥
i := I− ‖vi‖−2viv

H
i .

Iterative computation:

for n = 1, 2, · · · do

gi,n := P⊥
i R̂d(M)ŵi,n−1

if gi,n = 0, then EXIT

μi,n := gH
i,nR̂d(M)ŵi,n−1/g

H
i,nR̂d(M)gi,n

ŵi,n := ŵi,n−1 − μi,ngi,n

end for

end for

Output:

Filter estimate sequences {ŵ1,n}, {ŵ2,n}, · · · , {ŵT−M,n}, n = 1, 2, · · · .

Fig. 1: Proposed auxiliary-vector (AV) algorithm for the gen-

eration of MMSE filter estimate sequences {ŵ1,n}, {ŵ2,n},

· · · , {ŵT−M,n}, n = 1, 2, · · · .

Lemma 2 For any mask segment i = 1, 2, · · · , T −M , suc-
cessively generated auxiliary vectors, defined as in (15), are
orthogonal; that is,

gH
i,jgi,j+1 = 0, j = 1, 2, · · · . (18)

Theorem 1 For any mask segment i = 1, 2, · · · , T −M , the
sequence of auxiliary vectors {gi,n}, n = 1, 2, · · · , converges
to the zero vector as n tends to infinity,

lim
n→∞gi,n = 0. (19)

Theorem 2 For any mask segment i = 1, 2, · · · , T −M and
sample support M large enough for R̂d(M) to be invertible
(M ≥ L + q − 1), the sequence of auxiliary-vector filters
delivered by (11) converges as follows,

lim
n→∞ ŵi,n =

[R̂d(M)]−1vi

vH
i [R̂d(M)]−1vi

. (20)

By Theorem 2, we conclude that our filter sequence con-

verges to the signal-absent SMI filter estimate in (8). At the

same time, as the sample support M → ∞ the convergence

point of the sequence tends to (3) and the algorithm offers the

means to derive the MMSE filter without any form of explicit

covariance matrix inversion, decomposition, or diagonaliza-

tion. Theorem 3 establishes convergence when the sample

support is not enough for R̂d(M) to be invertible. The proof,

again omitted due to lack of space, shall be credited to [17].

Theorem 3 For any mask segment i = 1, 2, · · · , T − M ,
consider M small enough (M < L + q − 1) such that

4561



(a)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14
·10−3

Iteration index n

‖ŵ
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Fig. 2: Convergence of AV sequence {ŵi,n}, n = 1, 2, · · · , when R̂d(M) is invertible, captured in terms of (a) the squared

euclidean norm and (b) the mean-square estimation error calculated over 10 000 independent realizations.

R̂d(M) is singular with eigenvector decomposition rep-
resentation ÛΛ̂ÛH . Let P⊥

Û
be the orthogonal projec-

tor onto the nullspace of R̂d(M) such that P⊥
Û
R̂d(M) =

0(L+q−1)×(L+q−1). Then,

lim
n→∞ ŵi,n =

P⊥
Û
vi

vH
i P⊥

Û
vi

. (21)

Therefore, by Theorem 3, when the sample support size

is less than the length of the (multipath extended) mask seg-

ment, the AV filter sequence converges to the projection of

the matched filter vi onto the subspace orthogonal to the col-

lected data.

In Fig. 2(a), we illustrate the convergence of the AV se-

quence {ŵi,n}, n = 1, 2, · · · , as derived in (20) for R̂d(M)
being invertible. Denoting by ŵi,∞ the convergence point,

we depict the convergence in terms of the squared euclidean

norm ‖ŵi,n− ŵi,∞‖2 as a function of the iteration step. Sys-

tem specifics per Section 2 notation are L = 80, q = 1,

σ2 = 0dB, pj/σ
2 = 10dB (signal-to-noise ratio of the jam-

ming signal), pu/σ
2 = 0dB (signal-to-noise ratio of the user

signal), sample support M = 240. In Fig. 2(b) we show the

mean-square filter estimation error, E{‖ŵi,n −wi,MMSE‖2},

for the ith information bit interval as a function of the iteration

step n, calculated over 10 000 independent filter estimator re-

alizations. As reference lines, we include the mean-square fil-

ter estimation error of the signal-absent SMI estimator ŵi,∞
and the squared euclidean distance between the conventional

matched filter and the ideal MMSE filter ‖wi,MF−wi,MMSE‖2.

Fig. 2(b) demonstrates that early, non-asymptotic elements of

the generated sequence of AV filter estimators outperform the

signal-absent SMI estimator (when the latter exists, i.e. when

R̂d(M) is invertible).
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Fig. 3: Bit-error-rate for MF, SMI-MMSE, proposed AV,

and ideal MMSE receivers of PN-masked signals (adaptation

sample support M = 70).

5. SIMULATION STUDIES

In this section, we carry out a simulation study on the protec-

tion of PN-masked bitstreams against highly non-stationary

jamming by means of the proposed technique. Each PN-

masked information bit is filtered by the best, in MS filter esti-

mation error, AV filter-estimate generated by the algorithm in

Fig. 1 with sample support M < T − 1. In Fig. 3, we set the

system parameters to sample support value M = 70, coher-

ence interval length T = 250, mask segment length L = 32,

number of mulitpaths q = 1, σ2 = 0dB, pj/σ
2 = 20dB.

Then, we plot the bit-error-rate (BER) attained by the AV fil-

ter as a function of the input SINR calculated over 10 000

independent simulation runs. For reference purposes, we in-

clude in the plot the BER of the conventional matched filter in

(10) and the SMI-MMSE filter estimate in (8). As a theoret-

ical lower bound, we also add the curve of the ideal MMSE

filter. The effectiveness –and superiority– of the proposed AV

scheme can be easily seen.
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